Skip to main content

Stochastic Particle Approximations for Two-Dimensional Navier-Stokes Equations

  • Conference paper
Dynamics and Randomness II

Part of the book series: Nonlinear Phenomena and Complex Systems ((NOPH,volume 10))

  • 262 Accesses

Abstract

Abstract. We present a probabilistic interpretation of some Navier-Stokes equations which describe the behaviour of the velocity field in a viscous incompressible fluid. We deduce from this approach stochastic particle approximations, which justify the vortex numerical schemes introduced by Chorin to simulate the solutions of the Navier-Stokes equations.

After some recalls on the McKean-Vlasov model, we firstly study a Navier-Stokes equation defined on the whole plane. The probabilistic approach is based on the vortex equation, satisfied by the curl of the velocity field. The equation is then related to a nonlinear stochastic differential equa¬tion, and this allows us to construct stochastic interacting particle systems with a “propagation of chaos” property: the laws of their empirical measures converge, as the number of particles tends to infinity to a deterministic law with time-marginals solving the vortex equation. Our approach is inspired by Marchioro and Pulvirenti [26] and we improve their results in a pathwise sense.

Next we study the case of a Navier-Stokes equation defined on a bounded domain, with a no-slip condition at the boundary. In this case, the vortex equation satisfies a Neumann condition at the boundary, which badly depends on the solution. We simplify the model by studying in details the case of a fixed Neumann condition and we finally explain how the results should be adapted in the Navier-Stokes case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benachour, S.; Roynette, B. and Vallois, P. (2001) Branching Process Associated with 2d-Navier-Stokes Equation, Revista Mathematica Iberoamericana, Vol.17 no. 2, pp. 331–373.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bossy, M. (1995) Vitesse de Convergence d’Algorithmes Particulaires Stochastiques et Application a l’Equation de Burgers Thèse Université de Provence

    Google Scholar 

  3. Bossy, M. and Talay, D. (1996) Convergence Rate for the Approximation of the Limit Law of Weakly Interacting Particles: Application to the Burgers Equation, The Annals of Probability, Vol.6 no. 3, pn 818–861

    Article  MathSciNet  MATH  Google Scholar 

  4. Bossy, M.; Fezoui, L. and Piperno, S. (1997) Comparison of a Stochastic Particle Method and a Finite Volume Deterministic Method Applied to the Burgers Equation, Monte Carlo Methods Avvl., Vol.3 no. 2. pp. 45–53.

    MathSciNet  Google Scholar 

  5. Bossy, M. and Talay, D. (1997) A Stochastic Particle Method for the McKeanVlasov and the Burgers Equation, Mathematics of Computation, Vol.66 no. 217, pp. 157–192.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bossy, M. and Jourdain, B. (2002) Rate of Convergence of a Particle Method for the Solution of a ld Viscous Scalar Conservation Law in a Bounded Interval, Vol.30 no. 4. np. 1797–1832.

    Google Scholar 

  7. Brezis, H. (1993) Analyse Fonctionnelle Masson.

    Google Scholar 

  8. Busnello, B. (1999) A Probabilistic Approach to the Two-Dimensional Navier-Stokes Equations. The Annals of Prob.. Vol.27 no. 4 pp 1750–1780

    Article  MathSciNet  MATH  Google Scholar 

  9. Chorin, A.J. (1994) Vorticity and Turbulence, Applied Mathematical Sciences Vol.103, Springer-Verlag.

    MATH  Google Scholar 

  10. Cottet, P.H. (1989) Boundary Conditions and Deterministic Vortex Methods for the Navier-Stokes Equations, in Mathematical Aspects of Vortex Dynamics, SIAM, Philadelphia PA.

    Google Scholar 

  11. Fernandez, B. and Méléard, S. (2000) Asymptotic Behaviour for Interacting Diffusion Processes with Space-Time Random Birth Bernoulli Vol 6 no 1 pp 91–111

    Article  MathSciNet  MATH  Google Scholar 

  12. Friedman, A. (1964) Partial Differential Equations of Parabolic Type, Prentice Hall, Englewoods Cliffs. N.J.

    MATH  Google Scholar 

  13. Friedman, A. (1975) Stochastic Differential Equations and Applications, Vol.1, Academic Press.

    MATH  Google Scholar 

  14. Gartner, J. (1988) On the McKean-Vlasov Limit for Interacting Diffusions, Math. Nachr., Vol.137, pp. 197–248.

    Article  MathSciNet  Google Scholar 

  15. Giet, J.S. (2000) Processus Stochastiques: Application a l’Equation de Navier-Stokes; Simulation de la Loi de Diffusions Irrégulières; Vitesse du Schema d’Euler pour des Fonctionnelles, These de Doctorat, Université Henri Poincaré Nancy 1.

    Google Scholar 

  16. Giga, Y.; Miyakawa, T. and Osada, H. (1988) Two-Dimensional Navier-Stokes Flow with Measures as Initial Vorticity, Arch. Rational Mech. Anal., Vol.104, pp. 223–250.

    Article  MathSciNet  MATH  Google Scholar 

  17. Gilbarg, D. and Trudinger, N.S. (1983) Elliptic Partial Differential Equations of Second Order, 2nd ed., Berlin-Heidelberg-New-York, Springer-Verlag.

    Book  MATH  Google Scholar 

  18. Gobet, E. (2001) Euler Schemes and Half-Space Approximations for the Simulation of Diffusion in a Domain, ESAIM P&S, Vol.5, pp. 261–293.

    Article  MathSciNet  MATH  Google Scholar 

  19. Jourdain, B. and Méléard, S. (1998) Propagation of Chaos and Fluctuations for a Moderate Model with Smooth Initial Data, Annales de l’IHP, Vol.34 no. 6, pp. 727–767.

    MATH  Google Scholar 

  20. Jourdain, B. (2000) Diffusion Processes Associated with Nonlinear Evolution Equations for Signed Initial Measures, Methodol. Comput. Appl. Probab., Vol.2 no. 1, pp. 69–91.

    Article  MathSciNet  MATH  Google Scholar 

  21. Jourdain, B. and Méléard, S. (2002) Probabilistic Interpretation and Particle Method for Vortex Equations with Neumann’s Boundary Conditions, Prépub. 02/8, Université Paris 10.

    Google Scholar 

  22. Karatzas, I. and Shreve, S.E. (1991) Brownian motion and Stochastic calculus, 2nd ed., Springer-Verlag.

    MATH  Google Scholar 

  23. Ladyzenskaja, O.A., Solonnikov, V.A. and Ural’ceva, N.N. (1968) Linear and Quasilinear Equations of Parabolic Type, AMS.

    Google Scholar 

  24. Leonard, C. (1986) Une Loi des Garnds Nombres pour des Systèmes de Diffusion

    Google Scholar 

  25. avec Interaction et a Coefficients non Bornés, Ann. I.H.P., Vol.22, pp. 237–262.

    Google Scholar 

  26. Lions, P.L. and Sznitman, A.S. (1984) Stochastic Differential Equations with Reflecting Boundary Conditions, Communications on Pure and Applied Mathematics, Vol.37, pp. 511–537.

    Article  MathSciNet  MATH  Google Scholar 

  27. Marchioro, C. and Pulvirenti, M. (1982) Hydrodynamics in Two Dimensions and Vortex Theory, Commun. Math. Phys., Vol.84, pp. 483–503.

    Article  MathSciNet  MATH  Google Scholar 

  28. McKean, H.P. (1967) Propagation of Chaos for a Class of Nonlinear Parabolic Equations. Lecture Series in Diffferential Equations Vol.7, pp. 41–57.

    MathSciNet  Google Scholar 

  29. Méléard, S. (1996) Asymptotic Behaviour of some Interacting Particle Systems, McKean-Vlasov and Boltzmann Models, CIME Lectures, L.N. in Math., Springer Verlag, Vol.1627, pp. 42–95.

    Google Scholar 

  30. Méléard, S. (2000) A Trajectorial Proof of the Vortex Method for the TwoDimensional Navier-Stokes Equation, Ann. Appl. Prob., Vol.10 no. 4, pp. 1197–1211.

    MATH  Google Scholar 

  31. Méléard, S. (2001) Monte-Carlo Approximations of the Solution of Two-Dimensional Navier-Stokes Equations with Finite Measure Initial Data, P. T. R. F., Vol.121 no. 3, pp. 367–388.

    Article  MATH  Google Scholar 

  32. Meyer, P.A. (1966) Probabilités et Potentiel, Hermann.

    Google Scholar 

  33. Osada, H. (1987) Propagation of Chaos for the Two Dimensional Navier-Stokes Equations, Probabilistic Methods in Math. Phys., (K. Ito and N. Ikeda Eds.), Tokyo: Kinokuniya, pp. 303–334.

    Google Scholar 

  34. Pommerenke, Ch. (1992) Boundary Behaviour of Conformal Maps, Springer-Verlag.

    Book  MATH  Google Scholar 

  35. Rachev, S.T. (1991) Probability Metrics and the Stability of Stochastic Models, Chichester John Wiley and Sons.

    MATH  Google Scholar 

  36. Sato, K. and Ueno, T.(1965) Multi-Dimensional Diffusion and the Markov Process on the Boundary, J. Math. Kyoto Univ., Vol.4 no. 3, pp. 529–605.

    MathSciNet  MATH  Google Scholar 

  37. Sznitman, A.S. (1984) Nonlinear Reflecting Diffusion Process, and the Propagation of Chaos and Fluctuations Associated, J. of Functional Analysis, Vol.56, pp. 311–336.

    Article  MathSciNet  MATH  Google Scholar 

  38. Sznitman, A.S. (1991) Topics in Propagation of Chaos, Ecole d’Eté de Probabilités de Saint-Flour XIX – 1989, L.N. in Math., Vol.1464, Springer-Verlag.

    Google Scholar 

  39. Tanaka, H. (1982) Limit Theorems for Certain Diffusion Processes with Interaction, Tanigushi Svmp. on Stochastic Analysis, Katata, pp. 469–488.

    Google Scholar 

  40. Temam, R. (1979) Navier-Stokes Equations, North Holland.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Méléard, S. (2004). Stochastic Particle Approximations for Two-Dimensional Navier-Stokes Equations. In: Maass, A., Martínez, S., Martín, J.S. (eds) Dynamics and Randomness II. Nonlinear Phenomena and Complex Systems, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2469-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2469-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6565-0

  • Online ISBN: 978-1-4020-2469-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics