Skip to main content
  • 197 Accesses

Abstract

In this paper we discuss the strong convergence of quantum martingale on (Boson) Fock space. In particular, the strong convergence of basic martingales are established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accardi L., Cecchini C.: Conditional expectation in von Neumann algebras and a Theorem of Takesaki, J. Funct. Anal. 45 (1982) 245–273.

    Article  MathSciNet  MATH  Google Scholar 

  2. Accardi L., Longo R.: Martingale convergence of generalized conditional expectations, J. Funct. Anal. 118 (1993) 119–130.

    Article  MathSciNet  MATH  Google Scholar 

  3. Benth F.E., Potthoff J.: On the martingale property for generalized stochastic processes, Stochastics Stochastics Rep. 58 (1996) 349–367.

    MathSciNet  MATH  Google Scholar 

  4. Belavkin V.P.: A quantum nonadapted Ito formula and stochastic analysis in Fock scale, J. Funct. Anal. 102 (1991) 414–447.

    Article  MathSciNet  Google Scholar 

  5. Chung D.M., Ji U.C., Obata N.: Quantum stochastic analysis via white noise operators in weighted Fock space, Rev. Math. Phys. 14 (2002) 241–272.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cuculescu I.: Martingales on von Neumann algebras, J. Multivariate Anal. 1 (1971) 17–27.

    Article  MathSciNet  MATH  Google Scholar 

  7. Dang-Ngoc N.: Pointwise convergence of martingales in von Neumann algebras, Israel J. Math. 34 (1979) 273–280.

    Article  MathSciNet  MATH  Google Scholar 

  8. Goldstein S.: Convergence of martingales in von Neumann algebras, Bull. Acad. Polon. Sci. S´er. Sci. Math. 27 (1979) 853–859.

    MATH  Google Scholar 

  9. Gross L., Malliavin P.: Hall’s transform and the Segal–Bargmann map, in “Ito’s Stochastic Calculus and Probability Theory (N. Ikeda, S. Watanabe, M. Fukushima and H. Kunita, Eds.),” pp. 73–116, Springer-Verlag, 1996.

    Chapter  Google Scholar 

  10. Grothaus M., Kondratiev Yu.G., Streit L.: Complex Gaussian analysis and the Bargmann–Segal space, Methods Funct. Anal. Topology 3 (1997) 46–64.

    MathSciNet  MATH  Google Scholar 

  11. Hiai F., Tsukada M.: Strong martingale convergence of generalized conditional expectations on von Neumann algebras, Trans. Amer. Math. Soc. 282 (1984) 791–798.

    Article  MathSciNet  MATH  Google Scholar 

  12. Hida T.: “Analysis of Brownian Functionals,” Carleton Math. Lect. Notes, no. 13, Carleton University, Ottawa, 1975.

    Google Scholar 

  13. Hudson R.L., Parthasarathy K.R.: Quantum Ito’s formula and stochastic evolutions, Commun. Math. Phys. 93 (1984) 301–323.

    Article  MathSciNet  MATH  Google Scholar 

  14. Ji U.C.: Stochastic integral representation theorem for quantum semimartingales, J. Funct. Anal. 201 (2003) 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  15. Ji U.C., Obata N.: Segal–Bargmann transform of white noise operators and white noise differential equations, RIMS Kokyuroku 1266 (2002) 59–81.

    MathSciNet  Google Scholar 

  16. Ji U.C., Obata N.: A role of Bargmann-Segal spaces in characterization and expansion of operators on Fock space, preprint, 2000.

    Google Scholar 

  17. Kubo I., Takenaka S.: Calculus on Gaussian white noise I–IV, Proc. Japan Acad. Ser. A Math. Sci. 56A (1980) 376–380;

    Article  MathSciNet  MATH  Google Scholar 

  18. Kubo I., Takenaka S.: Calculus on Gaussian white noise I–IV, Proc. Japan Acad. Ser. A Math. Sci. 56A (1980) 411–416;

    Article  MathSciNet  MATH  Google Scholar 

  19. Kubo I., Takenaka S.: Calculus on Gaussian white noise I–IV, Proc. Japan Acad. Ser. A Math. Sci. 57A (1981) 433–437;

    Article  MathSciNet  MATH  Google Scholar 

  20. Kubo I., Takenaka S.: Calculus on Gaussian white noise I–IV, Proc. Japan Acad. Ser. A Math. Sci. 58A (1982) 186–189.

    Article  MathSciNet  MATH  Google Scholar 

  21. Kuo H.-H.: White Noise Distribution Theory, CRC Press, 1996.

    Google Scholar 

  22. Lindsay J.M., Maassen H.: An integral kernel approach to noise, in “Quantum Probability and Applications III (L. Accardi and W. von Waldenfels Eds.).” Lecture Notes in Math. Vol. 1303, pp. 192–208, Springer-Verlag, 1988.

    Google Scholar 

  23. Lindsay J.M., Parthasarathy K.R.: Cohomology of power sets with applications in quantum probability, Commun. Math. Phys. 124 (1989) 337–364.

    Article  MathSciNet  MATH  Google Scholar 

  24. Meyer P.-A.: “Quantum Probability for Probabilists,” Lect. Notes in Math., Vol. 1538, Springer-Verlag, 1993.

    Google Scholar 

  25. Obata N.: “White Noise Calculus and Fock Space,” Lect. Notes in Math., Vol. 1577, Springer-Verlag, 1994.

    Google Scholar 

  26. Obata N.: Generalized quantum stochastic processes on Fock space, Publ. RIMS, Kyoto Univ., 31 (1995) 667–702.

    Article  MathSciNet  MATH  Google Scholar 

  27. Obata N.: White noise approach to quantum martingales, in “Probability Theory and Mathematical Statistics”, pp. 379–386, World Sci. Publishing, 1995.

    Google Scholar 

  28. Obata N.: Conditional expectation in classical and quantum white noise calculi, RIMS Kokyuroku 923 (1995) 154–190.

    MathSciNet  Google Scholar 

  29. Obata N.: Inverse S-transform, Wick product and overcompleteness of exponential vectors, in “Quantum Information IV (T. Hida and K. Saitˆo, Eds.),” pp. 147–176, World Sci. Publishing, 2002.

    Google Scholar 

  30. Parthasarathy K.R.: “An introduction to quantum stochastic calculus”, Birkhäuser, 1992.

    Google Scholar 

  31. Parthasarathy K.R.: Some additional remarks on Fock space stochastic calculus, in Lect. Notes in Math., Vol. 1204, pp. 331–333, Springer-Verlag, 1986.

    Google Scholar 

  32. Parthasarathy K.R., Sinha K.B.: Stochastic integral representation of bounded quantum martingales in Fock space, J. Funct. Anal. 67 (1986) 126–151.

    Article  MathSciNet  MATH  Google Scholar 

  33. Potthoff J., Timpel M.: On a dual pair of spaces of smooth and generalized random variables, Potential Analysis 4 (1995) 637–654.

    Article  MathSciNet  MATH  Google Scholar 

  34. Tsukada M.: Strong convergence of martingales in von Neumann algebras, Proc. Amer. Math. Soc. 88 (1983) 537–540.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ji, U.C., Lim, K.P. (2004). Fock Space Operator Valued Martingale Convergence. In: Albeverio, S., de Monvel, A.B., Ouerdiane, H. (eds) Proceedings of the International Conference on Stochastic Analysis and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2468-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2468-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6661-9

  • Online ISBN: 978-1-4020-2468-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics