Scanning Acoustic Microscopy Covering a Wide Temperature Range: SAM(T)

  • P. Rajamand
  • R. Tilgner
  • R. Schmidt
  • J. Baumann
  • P. Klofac
  • M. Rothenfusser
  • B. Granz
Conference paper
Part of the Acoustical Imaging book series (ACIM, volume 27)

Abstract

The reliability of plastic encapsulated microchips is strongly influenced by temperature. Scanning Acoustic Microscopy (SAM) is established as an indispensable non-destructive analytical tool to evaluate mechanical failures such as cracks or delaminations imposed by reliability tests within electronic components. They are investigated by SAM at room temperature after a treatment by thermal stress. Thus, the very failure mechanisms due to the thermal effects remain in dark. In this work we present for the first time the growth and change of delaminations in integrated circuit devices under thermal stress from -60°C to 150°C in a real temperature manner. For this SAM(T) was established, a SAM with the particular feature to change the temperature of the object and to record its changes online. This kind of results may be used as valuable input for future work on virtual reliability testing for microelectronics.

Keywords

Quartz Torque Steam Epoxy Acoustics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Alpern, H. Pape, R. Tilgner. Schadensmechanismen bei kunststoffgekapselten integrierten Schaltungen unter Temperaturwechselbelastung / Mechanisms of damage in plastic encapsulated circuits subjected to temperature cycle loads (bilingual edition). VTE 10 (1998) pp. 10–18.Google Scholar
  2. 2.
    R. Schmidt, P. Alpern, K. Plecher, and R. Tilgner. Investigation of the Adhesion Strength between Molding Compound and Leadframe at Higher Temperatures. 2nd Electronic Packaging Technology Conference, Singapore, 8 – 10 December 1998, IEEE 1998, pp. 349–353.Google Scholar
  3. 3.
    P. Alpern, K.C. Lee, R. Dudek, R. Tilgner. A Simple Model for the Mode I Popcorn Effect for IC Packages With Copper Leadframe. IEEE Trans. Component and Packaging Technologies 25 (2002) pp. 301–308.CrossRefGoogle Scholar
  4. 4.
    P. Alpern, R. Dudek, R. Schmidt, V. Wicher, R. Tilgner. On the Mode II Popcorn Effect in Thin Packages. IEEE Trans. Components and Packaging Technologies 25 (2002) pp. 56–65.CrossRefGoogle Scholar
  5. 5.
    A.A. Gallo, R. Munamarty. Popcorning: A Failure Mechanism in Plastic-Encapsulated Microcircuits. IEEE Transactions on Reliability 44 (1995) pp. 362–367.CrossRefGoogle Scholar
  6. 6.
    M. Pecht and A. Dasgupta. Physics of Failure: An Approach to Reliable Product Development. Proc. Institute of Environmental Sciences (1995) pp. 111–117.Google Scholar
  7. 7.
    G.M. Crean, C.M. Flannery, S.C.Ó. Mathúna. Acoustic Microscopy Analysis of Microelectronic Interconnection and Packaging Technologies. In: Advances in Acoustic Microscopy, Vol. 1 (A. Briggs, ed.), Plenum Press, New York, 1995, pp. 1–48.CrossRefGoogle Scholar
  8. 8.
    G. Pfannschmidt. Characterization of Electronic Components by Acoustic Microscopy. Advances in Acoustic Microscopy, Vol. 2 (A. Briggs, W. Arnold, eds.), Plenum Press, New York, 1996, pp. 1–38.CrossRefGoogle Scholar
  9. 9.
    C. Miyasaka and B.R. Tittmann. Intermediate Temperature Scanning Acoustic Microscope. 1998 IEEE Ultrasonics Symposium. pp. 1265–1268.Google Scholar
  10. 10.
    K. Yamanaka, Y. Nagata, T. Koda, K. Karaki. Low Temperature Acoustic Microscopy for Material Characterization. 1990 IEEE Ultrasonics Symnosium. np 913–920Google Scholar
  11. 11.
    A.-U. Rehman, C.-K. Jen, I. Ihara. High Temperature Immersion Type Ultrasonic Imaging Probes. Review of Progress in QNDE 20 (2001) pp. 845–852.Google Scholar
  12. 12.
    JULABO Labortechnik GmbH, Eisenbahnstrasse 45, D-77960 Seelbach, Germany, www.julabo.de.Google Scholar
  13. 13.
    available from Solvay Solexis S.p.A., viale lombardia, 20, I-20021 Bollate, MI, Italy, www.solvaysolexis.com.Google Scholar
  14. 14.
    Sigma Instruments Inc, 8919 W. Grandridge Blvd Suite B, Kennewick, WA 99336 USA, www.sigmatx.com.Google Scholar
  15. 15.
    data provided by vendors.Google Scholar
  16. 16.
    R. Dudek, H. Walter, B. Michel, P. Alpern, R. Schmidt, R. Tilgner. Studies on Parameters for Popcorn Cracking. Proc. of Polytronic 2001 in Potsdam, Germany, October 21–24, 2001, pp. 140–148.Google Scholar
  17. 17.
    W. Arnold. Nonlinear Ultrasonic Phenomena — New Attempts to Improve the Reliable Detection of the Quality of Adhesive Bonds. Proceedings of the 14th World Conference on Non-Destructive Testing, New Delhi, 8–13 December 1996.Vol. 1, pp. 93 – 98.Google Scholar
  18. 18.
    C.J. Brotherhood, B.W. Drinkwater, F.J. Guild. The Effect of Compressive Loading on the Ultrasonic Detectability of Kissing Bonds in Adhesive Joints. Review of Progress in ONDE 20 (2000) pp. 111–118.Google Scholar
  19. 19.
    R. Tilgner, P. Alpern, J. Baumann, G. Pfannschmidt, O. Selig. Changing States of Delamination Between Molding Compound and Chip Surface: A Challenge for Scanning Acoustic Microscopy. IEEE Trans. CPMT B17 (1994) pp. 442–448.Google Scholar
  20. 20.
    R. Jones and C. Wykes. Holographic and Speckle Interferometry. Cambridge University Press, 1989, 2nd edition.Google Scholar
  21. 21.
    Ettemeyer AG, Nersinger Str. 12–16, 89275 Elchingen, Germany, www.ettemeyer.com.Google Scholar
  22. 22.
    L. Yang, H. Schubach, R. Wegner, A. Ettemeyer, “3D-Microscope-ESPI: Potential for Displacement Analysis on Small Areas”, Dr. Ettemeyer Application Report No. 01–00.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • P. Rajamand
    • 1
  • R. Tilgner
    • 2
  • R. Schmidt
    • 2
  • J. Baumann
    • 3
  • P. Klofac
    • 3
  • M. Rothenfusser
    • 3
  • B. Granz
    • 4
  1. 1.Institut National Polytechnique de LorraineEcole Européenne d’Ingénieurs en Génie des MatériauxNancy CedexFrance
  2. 2.Infineon Technologies AGMunichGermany
  3. 3.Siemens AGMunichGermany
  4. 4.Siemens AGErlangenGermany

Personalised recommendations