Skip to main content

Plant Mitochondrial Genome Evolution and Gene Transfer to the Nucleus

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 17))

Summary

The evolution of plant mitochondrial genomes, unlike their mammalian counterparts, has been characterized by a large variation in genome size, extensive structural rearrangements, a low rate of nucleotide substitutions, and insertion of foreign DNA. Gene content is highly variable, particulary in flowering plants where there has been rampant gene loss and gene transfer to the nucleus during angiosperm evolution. Ribosomal protein genes have been lost much more often than most respiratory genes. Numerous cases of gene transfer have been documented, and intermediate stages of the transfer process have been elucidated. Insights have been gained into the origin of mitochondrial targeting signals acquired by newly transferred genes. Some transferred genes have targeting signals with special characteristics. The requirements for protein targeting and sorting following gene transfer have been characterized in many instances. Not all missing mitochondrial genes have been transferred to the nucleus. Genes for a few proteins and several tRNAs are derived from their chloroplast or cytosolic counterparts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

Cox2:

cytochrome c oxidase subunit 2

mtDNA:

mitochondrial DNA

MTS:

mitochondrial targeting signal

TIM:

translocase of the inner membrane

TOM:

translocase of the outer membrane

UTR:

untranslated region

References

  • Adams KL and Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29: 380–395

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Clements MJ and Vaughn JC (1998) The Peperomia mitochondrial coxI group I intron: timing of horizontal transfer and subsequent evolution of the intron. J Mol Evol 46: 689–696

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Song K, Roessler PG, Nugent JM, Doyle JL, Doyle JJ and Palmer JD (1999) Intracellular gene transfer in action: dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes. Proc Natl Acad Sci USA 96: 13863–13868

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Daley DO, Qiu YL, Whelan J and Palmer JD (2000) Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408: 354–357

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Ong HC and Palmer JD (2001a) Mitochondrial gene transfer in pieces: fission of the ribosomal protein gene rpl2 and partial or completc gene transfer to the nucleus. Mol Biol Evol 18:2289–2297

    Article  CAS  Google Scholar 

  • Adams KL, Rosenblueth M, Qiu YL and Palmer JD (2001b) Multiple losses and transfers to the nucleus of two mitochondrial succinate dehydrogenase genes during angiosperm evolution. Genetics 158: 1289–1300

    PubMed  CAS  Google Scholar 

  • Adams KL, Daley DO, Whelan J and Palmer JD (2002a) Genes for two mitochondrial ribosomal proteins in flowering plants are derived from their chloroplast or cytosolic counterparts. Plant Cell 14:931–943

    Article  PubMed  CAS  Google Scholar 

  • Adams KL, Qiu YL, Stoutemyer M and Palmer JD (2002b) Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc Natl Acad Sci USA 99: 9905–9912

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Baker A and Schatz G (1987) Sequences from a prokaryotic genome or the mouse dihydrofolate reduetase gene can restore the import of a truncated precursor protein into yeast mitochondria. Proc Natl Acad Sci USA 84: 3117–3121

    Article  PubMed  CAS  Google Scholar 

  • Baumann F, Neupert W and Herrmann JM (2002) Insertion of bitopic membrane proteins into the inner membrane of mitochondria involves an export step from the matrix. J Biol Chem 277: 21405–21413

    Article  PubMed  CAS  Google Scholar 

  • Berg OG and Kurland CG (2000) Why mitochondrial genes are most often found in nuclei. Mol Biol Evol 17: 951–961

    Article  PubMed  CAS  Google Scholar 

  • Bergthorsson U, Adams KL, Thomason B and Palmer JD (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424: 197–201

    Article  PubMed  CAS  Google Scholar 

  • Bittner-Eddy P, Monroy AF and Brambl R (1994) Expression of mitochondrial genes in the germinating conidia of Neurospora crassa. J Mol Biol 235: 881–897

    Article  PubMed  CAS  Google Scholar 

  • Blanchard JL and Schmidt GW (1995) Pervasive migration of organellar DNA to the nucleus in plants. J Mol Evol 41:397–406

    Article  PubMed  CAS  Google Scholar 

  • Blanchard JL and Schmidt GW (1996) Mitochondrial DNA migration events in yeast and humans: integration by a common end-joining mechanism and alternative perspectives on nucleotide Substitution patterns. Mol Biol Evol 13: 537–548

    Article  PubMed  CAS  Google Scholar 

  • Bomer U, Meijer M, Guiard B, Dietmeier K, Pfanner N and Rassow J (1997) The sorting route of cytochrome b 2 branches from the general mitochondrial import pathway at the preprotein translocase of the inner membrane. J Biol Chem 272: 30439–30446

    Google Scholar 

  • Braun HP, Emmermann M, Kruft V and Schmitz UK (1992) Cytochrome c 1 from potato: a protein with a presequence for targeting to the mitochondrial intermembrane space. Mol Gen Genet 231:217–225

    Google Scholar 

  • Braun HP, Jansen L, Kurft V and Schmitz UK (1994) The ‘Hinge’ protein of cytochrome c reduetase from potato lacks the acidic domain and has no cleavable presequence. FEBS Lett 347: 90–94

    Article  PubMed  CAS  Google Scholar 

  • Brennicke A, Grohmann L, Hiesel R, Knoop V and Schuster W (1993) The mitochondrial genome on its way to the nucleus: different stages of gene transfer in higher plants. FEBS Lett 325: 140–145

    Article  PubMed  CAS  Google Scholar 

  • Cho Y and Palmer JD (1999) Multiple acquisitions via horizontal transfer of a group I intron in the mitochondrial coxl gene during evolution of the Araceae family. Mol Biol Evol 16: 1155–1165

    Article  PubMed  CAS  Google Scholar 

  • Cho Y, Qiu YL, Kuhlman P and Palmer JD (1998) Explosive invasion of plant mitochondria by a group I intron. Proc Natl Acad Sci USA 95: 14244–14249

    Article  PubMed  CAS  Google Scholar 

  • Claros MG, Perea J, Shu Y, Samatey FA, Popot JL and Jacq C (1995) Limitations to in vivo import of hydrophobic proteins into yeast mitochondria. The case of a cytoplasmically synthesized apocytochrome b. Eur J Biochem 228: 762–771

    Article  PubMed  CAS  Google Scholar 

  • Covello PS and Gray MW (1992) Silent mitochondrial and active nuclear genes for subunit 2 of cytochrome c oxidase (cox2) in soybean: evidence for RNA-mediated gene transfer. EMBO J 11: 3815–3820

    PubMed  CAS  Google Scholar 

  • Daley DO, Adams KL, Clifton R, Qualmann S, Millar AH, Palmer JD, Pratje E and Whelan J (2002a) Gene transfer from mitochondrion to nucleus: novel mechanisms for gene activa­tion from Cox2. Plant J 30: 11–21

    Article  PubMed  CAS  Google Scholar 

  • Daley DO, Clifton R and Whelan J (2002b) Intracellular gene transfer: reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase. Proc Natl Acad Sci USA 99: 10510–10515

    Article  PubMed  CAS  Google Scholar 

  • de Pinto B, Malladi SB and Altamura N (1999) MitBASE pilot: a database on nuclear genes involved in mitochondrial biogenesis and its regulation in Saccharomyces cerevisiae. Nucl Acids Res 27: 147–149

    Article  PubMed  Google Scholar 

  • Eyre-Walker A and Gaut BS (1997) Correlated rates of synonymous site evolution across plant genomes. Mol Biol Evol 14: 455–460

    Article  PubMed  CAS  Google Scholar 

  • Fauron CMR, Moore B and Casper M (1995) Maize as a model of higher plant mitochondrial genome plasticity. Plant Sci 112: 11–32

    Article  CAS  Google Scholar 

  • Figueroa P, Gomez I, Carmona R, Holuigue L, Araya A and Jordana X (1999a) The gene for mitochondrial ribosomal protein S14 has been transferred to the nucleus in Arabidopsis lhaliana. Mol Gen Genet 262: 139–144

    Article  PubMed  CAS  Google Scholar 

  • Figueroa P, Gomez I, Holuigue L, Araya A and Jordana X (1999b) Transfer of rps l4 from the mitochondrion to the nucleus in maize implied integration within a gene encoding the iron-sulphur subunit of succinate dehydrogenase and expression by alternative splicing. Plant J 18: 601–609

    Article  PubMed  CAS  Google Scholar 

  • Figueroa P, Holuigue L, Araya A and Jordana X (2000) The nuclear-encoded SDH2-RPS14 precursor is proteolytically processed between SDH2 and RPS14 to generate maize mitochondrial RPS14. Biochem Biophys Res Commun 271: 380–385

    Article  PubMed  CAS  Google Scholar 

  • Funes S, Davidson E, Claros MG, van Lis R, Perez-Martinez X, Vazquez-Acevedo M, King MP and Gonzalez-Halphen D (2002a) The typically mitochondrial DNA-encoded ATP6 subunit of the F1F0-ATPase is encoded by a nuclear gene in Chlamydomonas reinhardtii. J Biol Chem 277: 6051–6058

    Article  PubMed  CAS  Google Scholar 

  • Funes S, Davidson E, Reyes-Prieto A, Magallon S, Herion P, King MP and Gonzalez-Halphen D (2002b) A green algal apicoplast ancestor. Science 298: 2155

    Article  PubMed  CAS  Google Scholar 

  • Galanis M, Devenish RJ and Nagley P (1991) Duplication of leader sequence for protein targeting to mitochondria leads to increased import efficiency. FEBS Lett 282: 425–430

    Article  PubMed  CAS  Google Scholar 

  • Gray MW (1992) The endosymbiont hypothesis revisited. Int Rev Cytol 141: 233–357

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Burger G and Lang BF (1999) Mitochondrial evolution. Science 283: 1476–1481

    Article  PubMed  CAS  Google Scholar 

  • Grohmann L, Brennicke A and Schuster W (1992) The mitochondrial gene encoding ribosomal protein S12 has been translocated to the nuclear genome in Oenothera. Nucl Acids Res 20:5641–5646

    Article  PubMed  CAS  Google Scholar 

  • Handa H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucl Acids Res 31: 5907–5916

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Schmidt B, Wachter E, Weiss H and Neupert W (1986) Transport into mitochondria and intramitochondrial sorting of the Fe/S protein of ubiquinol-cytochrome c reductase. Cell 47:939–951

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Pfanner N, Nicholson DW and Neupert W (1989) Mitochondrial protein import. Biochim Biophys Acta 988:1–45

    Article  PubMed  CAS  Google Scholar 

  • Hedtke B, Borner T and Weihe A (2000) One RNA Polymerase serving two genomes. EMBO Rep 1: 435–440

    Article  PubMed  CAS  Google Scholar 

  • Henze K and Martin W (2001) How do mitochondrial genes get into the nucleus? Trends Genet 17: 383–387

    Article  PubMed  CAS  Google Scholar 

  • Herrmann JM (2003) Converting bacteria to organelles: evolution of mitochondrial protein sorting. Trends Microbiol 11: 74–79

    Article  PubMed  CAS  Google Scholar 

  • Joyce PB and Gray MW (1989) Chloroplast-like transfer RNA genes expressed in wheat mitochondria. Nucl Acids Res 17: 5461–5476

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki K, Kubo N, Ozawa K and Hirai A (1996) Targeting presequence acquisition after mitochondrial gene transfer to the nucleus occurs by duplication of existing targeting Signals. EMBO J 15: 6652–6661

    PubMed  CAS  Google Scholar 

  • Karlberg O, Canback B, Kurland CG and Andersson SG (2000) The dual origin of the yeast mitochondrial proteome. Yeast 17: 170–187

    Article  PubMed  CAS  Google Scholar 

  • Knoop V and Brennicke A (1994) Promiscuous mitochondrial group II intron sequences in plant nuclear genomes. J Mol Evol 39: 144–150

    PubMed  CAS  Google Scholar 

  • Knoop V, Unseld M, Marienfeld J, Brandt P, Sunkel S, Ullrich H and Brennicke A (1996) Copia-, gypsy- and LINE-like retro-transposon fragments in the mitochondrial genome of Arabidopsis thaliana. Genetics 142: 579–585

    PubMed  CAS  Google Scholar 

  • Kobayashi Y, Knoop V, Fukuzawa H, Brennicke A and Ohyama K (1997) Interorganellar gene transfer in bryophytes: the functional nad7 gene is nuclear encoded in Marchantia polymorpha. Mol Gen Genet 256: 589–592

    PubMed  CAS  Google Scholar 

  • Kubo N, Harada K, Hirai A and Kadowaki K (1999) A Single nuclear transcript encoding mitochondrial RPS14 and SDHB of rice is processed by alternative splicing: common use of the same mitochondrial targeting signal for different proteins. Proc Natl Acad Sci USA 96: 9207–9211

    Article  PubMed  CAS  Google Scholar 

  • Kubo N, Jordana X, Ozawa K, Zanlungo S, Harada K, Sasaki T and Kadowaki K (2000a) Transfer of the mitochondrial rps 10 gene to the nucleus in rice: acquisition of the 5’ untranslated region followed by gene duplication. Mol Gen Genet 263: 733–739

    Article  PubMed  CAS  Google Scholar 

  • Kubo N, Takano M, Nishiguchi M and Kadowaki K (2001) Mitochondrial sequence migrated downstream to a nuclear V-ATPase B gene is transcribed but non-functional. Gene 271: 193–201

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A and Mikami T (2000b) The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucl Acids Res 28:2571–2576

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Marechal-Drouard L, Akama K and Small I (1996) Striking differences in mitochondrial tRNA import between different plant species. Mol Gen Genet 252: 404–411

    Article  PubMed  CAS  Google Scholar 

  • Kurland CG and Andersson SG (2000) Origin and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev 64: 786–820

    Article  PubMed  CAS  Google Scholar 

  • Lang BF, Gray MW and Burger G (1999) Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 33: 351–397

    Article  PubMed  CAS  Google Scholar 

  • Laroche J, Li P, Maggia L and Bousquet J (1997) Molecular evolution of angiosperm mitochondrial introns and exons. Proc Natl Acad Sci USA 94: 5722–5727

    Article  PubMed  CAS  Google Scholar 

  • Lilly JW and Havey MJ (2001) Small, repetitive DNAs contribute significantly to the expanded mitochondrial genome of cucumber. Genetics 159: 317–328

    PubMed  CAS  Google Scholar 

  • Long M, de Souza SJ, Rosenberg C and Gilbert W (1996) Exon shuffling and the origin of the mitochondrial targeting function in plant cytochrome c x precursor. Proc Natl Acad Sci USA 93: 7727–7731

    Article  PubMed  CAS  Google Scholar 

  • Lucattini R, Likic VA and Lithgow T (2004) Bacterial proteins predisposed for targeting to mitochondria. Mol Biol Evol 21: 652–658

    Article  PubMed  CAS  Google Scholar 

  • Marc P, Margeot A, Devaux F, Blugeon C, Corral-Debrinski M and Jacq C (2002) Genome-wide analysis of mRNAs targeted to yeast mitochondria. EMBO Rep 3: 159–164

    Article  PubMed  CAS  Google Scholar 

  • Margeot A, Blugeon C, Sylvestre J, Vialette S, Jacq C and Corral-Debrinski M (2002) In Saccharomyces cerevisiae, ATP2 mRNA sorting to the vicinity of mitochondria is essential for respiratory function. EMBO J 21: 6893–6904

    Article  PubMed  CAS  Google Scholar 

  • Marienfeld J, Unseld M and Brennicke A (1999) The mitochondrial genome of Arabidopsis is composed of both native and immigrant information. Trends Plant Sci 4: 495–502

    Article  PubMed  Google Scholar 

  • Martin W and Schnarrenberger C (1997) The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet 32: 1–18

    Article  PubMed  CAS  Google Scholar 

  • Mollier P, Hoffmann B, Debast C and Small I (2002) The gene encoding Arabidopsis thaliana mitochondrial ribosomal protein S13 is a recent duplication of the gene encoding plastid S13. Curr Genet 40: 405–409

    Article  PubMed  CAS  Google Scholar 

  • Morikami A, Ehara G, Yuuki K and Nakamura K (1993) Molecular cloning and characterization of cDNAs for the gamma- and epsilon-subunits of mitochondrial FIFO ATP synthase from the sweet potato. J Biol Chem 268: 17205–17210

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Maeshima M, Nakamura K and Asahi T (1990) Molecular cloning of a cDNA for the smallest nuclear-encoded subunit of sweet potato cytochrome c oxidase. Analysis with the cDNA of the structure and import into mitochondria of the subunit. Eur J Biochem 191: 557–561

    Article  PubMed  CAS  Google Scholar 

  • Nakazono M and Hirai A (1993) Identification of the entire set of transferred chloroplast DNA sequences in the mitochondrial genome of rice. Mol Gen Genet 236: 341–346

    Article  PubMed  CAS  Google Scholar 

  • Neupert W (1997) Protein import into mitochondria. Annu Rev Biochem 66: 863–917

    Article  PubMed  CAS  Google Scholar 

  • Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A and Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genom 268: 434–445

    Article  CAS  Google Scholar 

  • Nugent JM and Palmer JD (1988) Location, identity, amount and serial entry of chloroplast DNA sequences in crucifer mitochondrial DNAs. Curr Genet 14: 501–509

    Article  PubMed  CAS  Google Scholar 

  • Nugent JM and Palmer JD (1991) RNA-mediated transfer of the gene coxll from the mitochondrion to the nucleus during flowering plant evolution. Cell 66: 473–481

    Article  PubMed  CAS  Google Scholar 

  • Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T et al. (1992) Gene Organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol 223: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD and Herbon LA (1988) Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol 28: 87–97

    Article  PubMed  CAS  Google Scholar 

  • Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu YL and Song K (2000) Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable Imitation rates. Proc Natl Acad Sci USA 97: 6960–6966

    Article  PubMed  CAS  Google Scholar 

  • Peeters N and Small I (2001) Dual targeting to mitochondria and chloroplasts. Biochim Biophys Acta 1541: 54–63

    Article  PubMed  CAS  Google Scholar 

  • Perez-Martinez X, Vazquez-Acevedo M, Tolkunova E, Funes S, Claros MG, Davidson E, King MP and Gonzalez-Halphen D (2000) Unusual location of a mitochondrial gene. Subunit III of cytochrome c oxidase is encoded in the nucleus of Chlamydomonad algae. J Biol Chem 275: 30144–30152

    Article  PubMed  CAS  Google Scholar 

  • Perez-Martinez X, Antaramian A, Vazquez-Acevedo M, Funes S, Tolkunova E, d’Alayer J, Claros MG, Davidson E, King MP and Gonzalez-Halphen D (2001) Subunit II of cytochrome c oxidase in Chlamydomonad algae is a heterodimer encoded by two independent nuclear genes. J Biol Chem 276: 11302–11309

    Article  PubMed  CAS  Google Scholar 

  • Perrotta G, Regina TM, Ceci LR and Quagliariello C (1996) Conservation of the Organization of the mitochondrial nad3 and rps 12 genes in evolutionarily distant angiosperms. Mol Gen Genet 251:326–337

    CAS  Google Scholar 

  • Popot JL and de Vitry C (1990) On the microassembly of integral membrane proteins. Annu Rev Biophys Chem 19: 369–4103

    Article  CAS  Google Scholar 

  • Qualmann SR, Daley DO, Whelan J and Pratje E (2003) Import pathway of nuclear encoded cytochrome c oxidase subunit 2 using yeast as a model. Plant Biol 5: 481–490

    Article  CAS  Google Scholar 

  • Ricchetti M, Fairhead C and Dujon B (1999) Mitochondrial DNA repairs double-strand breaks in yeast chromosomes. Nature 402: 96–100

    Article  PubMed  CAS  Google Scholar 

  • Sánchez H, Fester T, Kloska S, Schröder W and Schuster W (1996) Transfer of rps 19 to the nucleus involves the gain of an RNP-binding motif which may functionally replace RPS13 in Arabidopsis mitochondria. EMBO J 15: 2138–2149

    PubMed  Google Scholar 

  • Sandoval P, Leon G, Gomez I, Carmona R, Figueroa P, Holuigue L, Araya A and Jordana X (2004) Transfer of RPS14 and RPL5 from the mitochondrion to the nucleus in grasses. Gene 324:139–147

    Article  PubMed  CAS  Google Scholar 

  • Shields DC and Wolfe KH (1997) Accelerated evolution of sites undergoing mRNA editing in plant mitochondria and chloroplasts. Mol Biol Evol 14: 344–349

    Article  PubMed  CAS  Google Scholar 

  • Sjoling S and Glaser E (1998) Mitochondrial targeting peptides in plants. Trends Plant Sci 3: 136–140

    Article  Google Scholar 

  • Small I, Wintz H, Akashi K and Mireau H (1998) Two birds with one stone: genes that encode products targeted to two or more compartments. Plant Mol Biol 38: 265–277

    Article  PubMed  CAS  Google Scholar 

  • Small I, Akashi K, Chapron A, Dietrich A, Duchene A-M, Lancelin D, Marechal-Drouard L, Menand B, Mireau H, Moudden Y, Ovesna J, Peeters N, Sakamoto W, Souciet G and Wintz H (1999) The strange evolutionary history of plant mitochondrial tRNAs and their aminoacyl-tRNA synthetases. J Hered 90: 333–337

    Article  CAS  Google Scholar 

  • Stern DB and Lonsdale DM (1982) Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 299: 698–702

    Article  PubMed  CAS  Google Scholar 

  • Thorsness PE and Fox TD (1990) Escape of DNA from mitochondria to the nucleus in Saccharomyces cerevisiae. Nature 346:376–379

    Article  PubMed  CAS  Google Scholar 

  • Thorsness PE and Weber ER (1996) Escape and migration of nucleic acids between chloroplasts, mitochondria, and the nucleus. Int Rev Cytol 165: 207–234

    Article  PubMed  CAS  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P and Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15: 57–61

    Article  PubMed  CAS  Google Scholar 

  • Vaughn JC, Mason MT, Sper-Whitis GL, Kuhlman P and Palmer JD (1995) Fungal origin by horizontal transfer of a plant mitochondrial group I intron in the chimeric Coxl gene of Peperomia. J Mol Evol 41: 563–572

    Article  PubMed  CAS  Google Scholar 

  • von Heijne G (1987) Why mitochondria need a genome. FEBS Lett 198: 1–4

    Article  Google Scholar 

  • von Heijne G, Steppuhn J and Herrmann RG (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180: 535–545

    Article  Google Scholar 

  • Ward BL, Anderson RS and Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25: 793–803

    Article  PubMed  CAS  Google Scholar 

  • Wischmann C and Schuster W (1995) Transfer of rps 10 from the mitochondrion to the nucleus in Arabidopsis thaliana: evidence for RNA-mediated transfer and exon shuffling at the integration site. FEBS Lett 374: 152–156

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Li WH and Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84: 9054–9058

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Adams, K.L., Daley, D.O. (2004). Plant Mitochondrial Genome Evolution and Gene Transfer to the Nucleus. In: Day, D.A., Millar, A.H., Whelan, J. (eds) Plant Mitochondria: From Genome to Function. Advances in Photosynthesis and Respiration, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2400-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2400-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6651-0

  • Online ISBN: 978-1-4020-2400-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics