Protein Targeting and Import

  • James Whelan
  • Enrico Schleiff
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 17)


The targeting of nuclear encoded proteins to mitochondria requires that they are specifically imported from the pool of all proteins synthesised in the cytosol. This is more complicated in plant cells compared to other cells due to the presence of plastids, whose targeting signals resemble those of mitochondrial targeting signals in many aspects. Although it is generally believed that cytosolic factors should play a role in sorting between the two organelles there is no evidence for such a role. Rather, the physiochemical properties of targeting signals and the mechanism of targeting signal recognition by surface bound receptors, combined with regulation of the import process are all likely to combine to achieve targeting specificity. Our knowledge of the mitochondrial import apparatus in plants has been greatly aided by the availability of the complete Arabidopsis genome sequence, which has been used to define components of the import apparatus in plants, and how they differ structurally and mechanistically to those in other systems.


Transit Peptide Alternative Oxidase Plant Mitochondrion Dual Target Chloroplast Transit Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



ATP/ADP carrier


mitochondrial heme lyases


mitochondrial down protein import


mitochondrial intermediate peptidase


mitochondrial processing peptidase


mitochondrial import stimulating factor


nascent polypeptide associated complex


ribulose 1,5 bisphosphate carboxylase oxygenase


translocase of the inner mitochondrial membrane


translocase of the outer envelope membrane of chloroplasts


translocase of the outer mitochondrial membrane


uncoupling protein


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe Y, Shodai T, Muto T, Mihara K, Torii H, Nishikawa S, Endo T and Kohda D (2000) Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100: 551–560PubMedCrossRefGoogle Scholar
  2. Adams KL, Daley DO, Qiu YL, Whelan J and Palmer JD (2000) Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408: 354–357PubMedCrossRefGoogle Scholar
  3. Akashi K, Grandjean O and Small I (1998) Potential dual targeting of an Arabidopsis archaebacterial-like histidyl-tRNA synthetase to mitochondria and chloroplasts. FEBS Lett 431: 39–44PubMedCrossRefGoogle Scholar
  4. Altmann R (1890) Die Elementarorganismen und ihre Bezihungen zu den Zellen. Veit und Co., LeipzigGoogle Scholar
  5. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  6. Armstrong LC, Komiya T, Bergman BE, Mihara K and Bornstein P (1997) Metaxin is a component of a preprotein import complex in the outer membrane of the mammalian mitochondrion. J Biol Chem 272: 6510–6518PubMedCrossRefGoogle Scholar
  7. Atencio DP and Yaflfe MP (1992) MAS5, a yeast homolog of DnaJ involved in mitochondrial protein import. Mol Cell Biol 12:283–291PubMedGoogle Scholar
  8. Babiychuk E, Müller F, Eubel H, Braun HP, Frentzen M and Kushnir S (2003) Arabidopsis phosphatidylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 33: 899–909PubMedCrossRefGoogle Scholar
  9. Bauer MF, Gempel K, Reichert AS, Rappold GA, Lichtner P, Gerbitz K–D, Neupert W, Brunner M and Hofmann S (1999a) Genetic and structural characterisation of the human mitochondrial inner membrane translocase. J Mol Biol 289: 69–82PubMedCrossRefGoogle Scholar
  10. Bauer MF, Rothbauer U, Muhlenbein N, Smith RJ, Gerbitz K, Neupert W, Brunner M and Hofmann S (1999b) The mitochondrial TIM22 preprotein translocase is highly conserved throughout the eukaryotic kingdom. FEBS Lett 464: 41–47PubMedCrossRefGoogle Scholar
  11. Bauer MF, Sirrenberg C, Neupert W and Brunner M (1996) Role of Tim23 as voltage sensor and presequence receptor in protein import into mitochondria. Cell 87: 33–41PubMedCrossRefGoogle Scholar
  12. Beardslee TA, Roy-Chowdhury S, Jaiswal P, Buhot L, Lerbs-Mache S, Stern DB and Allison LA (2002) A nucleus-encoded maize protein with sigma factor activity accumulates in mitochondria and chloroplasts. Plant J 2002 31: 199–209CrossRefGoogle Scholar
  13. Beddoe T and Lithgow T (2002) Delivery of nascent polypeptides to the mitochondrial surface. Biochim Biophys Acta 1592: 35–39PubMedCrossRefGoogle Scholar
  14. Bhushan S, Lefebvre B, Stahl A, Wright SJ, Bruce BD, Boutry M and Glaser E (2003) Dual targeting and function of a protease in mitochondria and chloroplasts. EMBO Rep 4: 1073–1078PubMedCrossRefGoogle Scholar
  15. Blobel G and Sabatini DD (1971) Biomembranes. Plenum Pub. Corp, New YorkGoogle Scholar
  16. Bomer U, Meijer M, Maarse AC, Honlinger A, Dekker PJ, Pfanner N and Rassow J (1997) Multiple interactions of components mediating preprotein translocation across the inner mitochondrial membrane. EMBO J 16: 2205–2216PubMedCrossRefGoogle Scholar
  17. Borgese N, Gazzoni I, Barberi M, Colombo S and Pedrazzini E (2001) Targeting of a tail-anchored protein to endoplasmic reticulum and mitochondrial outer membrane by independent but competing pathways. Mol Biol Cell 12: 2482–2496PubMedCrossRefGoogle Scholar
  18. Boutry M, Nagy F, Poulsen C, Aoyagi K and Chua NH (1987) Targeting of bacterial chloramphenicol acetyltransferase to mitochondria in transgenic plants. Nature 328: 340–342PubMedCrossRefGoogle Scholar
  19. Branda SS and Isaya G, (1995) Prediction and Identification of new natural substrates of the yeast mitochondrial intermediate peptidase. J Biol Chem 270: 27366–27373PubMedCrossRefGoogle Scholar
  20. Brandt U, Yu L, Yu CA and Trumpower BL (1993) The mitochondrial targeting presequence of the Rieske iron-sulfur protein is processed in a single step after insertion into the cytochrome bc xcomplex in mammals and retained as a sub-unit in the complex. J Biol Chem 268: 8387–8390Google Scholar
  21. Braun H-P and Schmitz UK (1995) Are the ‘core’ proteins of the mitochondrial bc\ complex evolutionary relics of a processing protease? Trends Biochem Sci 20: 171–175PubMedCrossRefGoogle Scholar
  22. Braun H-P and Schmitz UK (1997) The mitochondrial processing peptidase. Int J Biochem Cell Biol 29: 1043–1045PubMedCrossRefGoogle Scholar
  23. Chabregas SM, Luche DD, Van Sluys MA, Menck CF and Silva-Filho MC (2003) Differential usage of two in-frame translational start codons regulates subcellular localization of Arabidopsis thaliana THI1. J Cell Sci 116: 285–291PubMedCrossRefGoogle Scholar
  24. Chen X, Van Valkenburgh C, Fang H and Green N (1999) Signal peptides having standard and nonstandard cleavage sites can be processed by Imp 1 of the mitochondrial inner membrane protease. J Biol Chem 274: 37750–37754PubMedCrossRefGoogle Scholar
  25. Chew O, Lister R, Qbabou S, Heazlewood JL, Soil J, Schleiff E, Millar AH and Whelan J (2004) A plant outer mitochondrial membrane protein with high amino acid sequence identity to a chloroplast protein import receptor. FEBS Lett 557: 109–114PubMedCrossRefGoogle Scholar
  26. Chew O and Whelan J (2003) Dual targeting ability of targeting signals is dependent on the nature of the mature protein. Func Plant Biol 30: 805–812CrossRefGoogle Scholar
  27. Chew O, Whelan J and Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278: 46869–46877PubMedCrossRefGoogle Scholar
  28. Cleary SP, Tan FC, Nakrieko KA, Thompson SJ, Mullineaux PM, Creissen GP, von Stedingk E, Glaser E, Smith AG and Robinson C (2002) Isolated plant mitochondria import chloroplast precursor proteins in vitro with the same efficiency as chloroplasts. J Biol Chem 277: 5562–5569PubMedCrossRefGoogle Scholar
  29. Creissen G, Reynolds H, Xue Y and Mullineaux P (1995) Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco. Plant J 8: 167–175PubMedCrossRefGoogle Scholar
  30. Curran SP, Leuenberger D, Oppliger W and Koehler CM (2002) The Tim9p–Timl0p complex binds to the transmembrane domains of the ADP/ATP carrier. EMBO J 21: 942–953PubMedCrossRefGoogle Scholar
  31. Cyr DM, Lu X and Douglas MG (1992) Regulation of HSP70 function by a eukaryotic DnaJ homolog. J Biol Chem 267: 20927–20931PubMedGoogle Scholar
  32. D’Silva PD, Schilke B, Walter W, Andrew A and Craig EA (2003) J protein cochaperone of the mitochondrial inner membrane required for protein import into the mitochondrial matrix. Proc Natl Acad Sci USA 100: 13839–13844PubMedCrossRefGoogle Scholar
  33. Dahlin C and Cline K, (1991) Developmental regulation of the plastid protein import apparatus. Plant Cell 3: 1131–1140PubMedGoogle Scholar
  34. Daley DO, Adams KL, Clifton R, Qualmann S, Millar AH, Palmer JD, Pratje E and Whelan J (2002) Gene transfer from the mitochondrion to the nucleus: Novel mechanisms for gene activation from Cox2. Plant J 30: 11–21.PubMedCrossRefGoogle Scholar
  35. Darrouzet E, Valkova-Valchanova M, Moser CC, Dutton PL, Daldal F (2000) Uncovering the 2Fe2S domain movement in the cytochrome bc xand its implications for energy conversion. Proc Natl Acad Sci USA 97: 4567–1572PubMedCrossRefGoogle Scholar
  36. Davis AJ, Ryan KR and Jensen RE (1998) Tim23p contains separate and distinct signals for targeting to mitochondria and insertion into the inner membrane. Mol Biol Cell 9: 2577–2593PubMedCrossRefGoogle Scholar
  37. Davis AJ, Sepuri NB, Holder J, Johnson AE and Jensen RE (2000) Two intermembrane space TIM complexes interact with different domains of Tim23p during its import into mitochondria. J Cell Biol 150:1271–1282PubMedCrossRefGoogle Scholar
  38. Dessi P, Pavlov P, Wallberg F, Rudhe C, Brack S, Whelan J and Glaser E (2003) Investigations on the in vitro import ability of mitochondrial precursor proteins synthesized in wheat germ transcription-translation extract. Plant Mol Biol 52: 259–271PubMedCrossRefGoogle Scholar
  39. Dessi P, Rudhe C and Glaser E (2000) Studies on the topology of the protein import channel in relation to the plant mitochondrial processing peptidase integrated into teh cytochrome bc x complex. Plant J 24: 637–644PubMedCrossRefGoogle Scholar
  40. Dessi P and Whelan J (1997) Temporal regulation of in vitro import of precursor proteins into tobacco mitochondria. FEBS Lett 415: 173–178PubMedCrossRefGoogle Scholar
  41. Diekert K, Kispal B and Lill R (1999) An internal targeting signal directing proteins into the mitochondrial intermembrane space. Proc Natl Acad Sci USA 96: 11752–11757PubMedCrossRefGoogle Scholar
  42. Donzeau M, Kaldi K, Adam A, Paschen S, Wanner G, Guiard B, Bauer MF, Neupert W and Brunner M (2000) Tim23 links the inner and outer mitochondrial membranes. Cell 101: 401–412.PubMedCrossRefGoogle Scholar
  43. Duby G, Degand H and Boutry M (2001 a) Structure requirment and identification of a cryptic cleavage site in the mitochondrial processing of a plant F,–ATPase (3–subunit presequence. FEBS Lett 505: 4009–4413CrossRefGoogle Scholar
  44. Duby G, Oufattole M and Boutry M (2001b) Hydrophobic residues within the predicted N-terminal amphiphilic a-helix of a plant mitochondrial targeting presequence play a major role in in vivo import. Plant J 27: 539–549PubMedCrossRefGoogle Scholar
  45. Duchene AM, Peeters N, Dietrich A, Cosset A, Small ID and Wintz H (2001) Overlapping destinations for two dual targeted glycyl-tRNA synthetases in Arabidopsis thaliana and Phaseolus vulgaris. J Biol Chem 276: 15275–15283PubMedCrossRefGoogle Scholar
  46. Dudley P, Wood CK, Pratt JR and Moore AL (1997) Developmental regulation of the plant mitochondrial matrix located HSP70 chaperone and its role in protein import. FEBS Lett 417: 321–324PubMedCrossRefGoogle Scholar
  47. Ellis JR (1977) Protein synthesis by isolated chloroplasts. Biochim Biophys Acta 463: 185–215.CrossRefGoogle Scholar
  48. Elo A, Lyznik A, Gonzalez DO, Kachman SD and Mackenzie SA (2003) Nuclear genes that encode mitochondrial proteins for DNA and RNA metabolism are clustered in the Arabidopsis genome. Plant Cell 15: 1619–1631PubMedCrossRefGoogle Scholar
  49. Emmermann M, Clericus M, Braun HP, Mozo T, Heins L, Kruft V and Schmitz UK (1994) Molecular features, processing and import of the Rieske iron-sulfur protein from potato mitochondria. Plant Mol Biol 25: 271–281PubMedCrossRefGoogle Scholar
  50. Epand RM, Hui SW, Argan C, Gillespie LL and Shore GC (1986) Structural analysis and amphiphilic properties of a chemically synthesized mitochondrial signal peptide. J Biol Chem 261: 10017–10020PubMedGoogle Scholar
  51. Frydman J (2001) Folding of newly translated proteins in vivo: The role of molecular chaperones. Annu Rev Biochem 70: 603–647PubMedCrossRefGoogle Scholar
  52. Funfschilling U and Rospert S (1999) Nascent polypeptide-associated complex stimulates protein import into yeast mitochondria. Mol Biol Cell 10: 3289–3299PubMedCrossRefGoogle Scholar
  53. Furukawa Y, Ikuta N, Omata S, Yamauchi T, Isobe T and Ichimura T (1993) Demonstration of the phosphorylation-dependent interaction of tryptophan hydroxylase with the 14–3–3 protein. Biochem Biophys Res Commun 194: 144–149PubMedCrossRefGoogle Scholar
  54. Gabriel K, Egan B and Lithgow T (2003) Tom40, the import channel of the mitochondrial outer membrane, plays an active role in sorting imported proteins. EMBO J 22: 2380–2386PubMedCrossRefGoogle Scholar
  55. Gautschi M, Lilie H, Funfschilling U, Mun A, Ross S, Lithgow T, Rucknagel P and Rospert S (2001) RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Sszlp and zuotin. Proc Natl Acad Sci USA 98: 3762–3767PubMedCrossRefGoogle Scholar
  56. Geissler A, Chacinska A, Truscott KN, Wiedemann N, Brandner K, Sickmann A, Meyer HE, Meisinger C, Pfanner N and Rehling P (2002) The mitochondrial presequence translo-case: an essential role of Tim50 in directing preproteins to the import channel. Cell 111: 507–518PubMedCrossRefGoogle Scholar
  57. George R, Beddoe T, Landl K and Lithgow T (1998) The yeast nascent polypeptide-associated complex initiates protein targeting to mitochondria in vivo. Proc Natl Acad Sci USA 95: 2296–2301PubMedCrossRefGoogle Scholar
  58. George R, Walsh P, Beddoe T and Lithgow T (2002) The nascent polypeptide-associated complex (NAC) promotes interaction of ribosomes with the mitochondrial surface in vivo. FEBS Lett 516: 213–216PubMedCrossRefGoogle Scholar
  59. Giglione C, Serero A, Pierre M, Boisson B and Meinnel T (2000) Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms. EMBO J 19: 5916–5929PubMedCrossRefGoogle Scholar
  60. Glaser E and Dessi P (1999) Integration of the mitochondrial-processing peptidase into the cytochrome bc complex in plants. J Bioenerget Biomemb 31: 259–274.CrossRefGoogle Scholar
  61. Glaser E, Sjoling S, Tanudji M and Whelan J (1998) Mitochondrial protein import in plants. Plant Mol Biol 38: 311–338.PubMedCrossRefGoogle Scholar
  62. Goggin DE, Lipscombe R, Fedorova E, Millar AH, Mann A, Atkins CA and Smith PM (2003) Dual intracellular localization and targeting of aminoimidazole ribonucleotide synthetase in cowpea. Plant Physiol 131: 1033–1041PubMedCrossRefGoogle Scholar
  63. Gray MW, Burger G and Lang BE (1999) Mitochondrial evolution. Science 283: 1476–1481.PubMedCrossRefGoogle Scholar
  64. Guera A, America T, van Waas M and Weisbeek PJ (1993) A strong protein unfolding activity is associated with the binding of precursor chloroplast proteins to chloroplast envelopes. Plant Mol Biol 23: 309–324PubMedCrossRefGoogle Scholar
  65. Habib SJ, Vasiljev A, Neupert W and Rapaport D (2003) Multiple functions of tail-anchor domains of mitochondrial outer membrane proteins. FEBS Lett 555: 511–515PubMedCrossRefGoogle Scholar
  66. Hachiya N, Alam R, Sakasegawa Y, Sakaguchi M, Mihara K and Omura T (1993) A mitochondrial import factor purified from rat liver cytosol is an ATP-dependent conformational modulator for precursor proteins. EMBO J 12: 1579–1586PubMedGoogle Scholar
  67. Hachiya N, Mihara K, Suda K, Horst M, Schatz G and Lithgow T (1995) Reconstitution of the initial steps of mitochondrial protein import. Nature 376: 705–709PubMedCrossRefGoogle Scholar
  68. Hamel P, Sakomoto W, Wintz H and Dujardin G (1997) Functional complementation of an oxal’ yeast mutant identifies an Arabidopsis thaliana cDNA involved in the assembly of respiratory complexes. Plant J 12: 1319–1327PubMedCrossRefGoogle Scholar
  69. Harmey MA, Hallermayer G, Korb H and Neupert W (1977) Transport of cytoplasmically synthesized proteins into the mitochondria in a cell free system from Neurospora crassa. Eur J Biochem 81: 533–544PubMedCrossRefGoogle Scholar
  70. Hartl F-U, Martin J and Neupert W (1992) Protein folding in the cell: the role of molecular chaperones HSP70 and HSP60. Annu Rev Biophys Biomol Structure 21: 293–322CrossRefGoogle Scholar
  71. Hartl F-U and Neupert W (1990) Protein sorting to mitochondria: evolutionary conservations of folding and assembly. Science 247: 930–938PubMedCrossRefGoogle Scholar
  72. Hartl F-U, Pfanner N, Nicholson DW and Neupert W (1989) Mitochondrial protein import. Biochim Biophys Acta 988: 1–5PubMedCrossRefGoogle Scholar
  73. Hedtke B, Borner T and Weihe A (2000) One RNA polymerase serving two genomes. EMBO Rep 1: 435–140.PubMedCrossRefGoogle Scholar
  74. Hell K, Neupert W and Stuart RA (2001) Oxalp acts as a general membrane insertion machinery for proteins encoded by mitochondrial DNA. EMBO J 20: 1281–1288PubMedCrossRefGoogle Scholar
  75. Herman P, Ramberg H, Baack R, maxwell J and Ostermann JC (2002) Formate dehydrogenease in Arabidopsis thaliana: overexpression and subcellular localisation in leaves. Plant Sci163:1137–1145Google Scholar
  76. Herrmann JM and Neupert W (2000) What fuels polypeptide translocation? An energetical view on mitochondrial protein sorting. Biochim Biophys Acta 1459: 331–338PubMedCrossRefGoogle Scholar
  77. Herrmann JM and Neupert W (2003) Protein insertion into the inner membrane of mitochondria. IUBMB Life 55: 219–225PubMedCrossRefGoogle Scholar
  78. Hirohashi T, Hase T and Nakai M (2001) Maize non-photosynthetic ferredoxin precursor is mis-sorted to the inter-membrane space of chloroplasts in the presence of light. Plant Physiol 125: 2154–2163PubMedCrossRefGoogle Scholar
  79. Holroyd C and Erdmann R (2001) Protein translocation machineries of peroxisomes. FEBS Lett 501: 6–10PubMedCrossRefGoogle Scholar
  80. Hoogenraad NJ, Ward LA and Ryan MT (2002) Import and assembly of proteins into mitochondria of mammalian cells. Biochim Biophys Acta 1592: 97–105PubMedCrossRefGoogle Scholar
  81. Horie C, Suzuki H, Sakaguchi M and Mihara K (2002) Characterization of signal that directs C–tail-anchored proteins to mammalian mitochondrial outer membrane. Mol Biol Cell 13: 1615–1625PubMedCrossRefGoogle Scholar
  82. Horie C, Suzuki H, Sakaguchi M and Mihara K (2003) Targeting and assembly of mitochondrial tail-anchored protein Tom5 to the TOM complex depend on a signal distinct from that of tail-anchored proteins dispersed in the membrane. J Biol Chem 278: 41462–1471PubMedCrossRefGoogle Scholar
  83. Hui D, Morden C, Zhang F and Ling V (2000) Combinatorial analysis of the structural requirements of the Escherichia coli hemolysin signal sequence. J Biol Chem 275: 2713–2720PubMedCrossRefGoogle Scholar
  84. Hurt EC, Goldschmidt Clermont M, Pesold Hurt B, Rochaix JD and Schatz G (1986) A mitochondrial presequence can transport a chloroplast-encoded protein into yeast mitochondria. J Biol Chem 261: 11440–11443PubMedGoogle Scholar
  85. Ivey RA, Subramanian C and Bruce BD (2000) Identification of a HSP70 recognition domain within the rubisco small subunit transit peptide. Plant Physiol 122: 1289–1299PubMedCrossRefGoogle Scholar
  86. Jan PS, Esser K, Pratje E and Michaelis G (2000) Soml, a third component of the yeast mitochondrial inner membrane peptidase complex that contains Impl and Imp2. Mol Gen Genet 263:483–191PubMedCrossRefGoogle Scholar
  87. Kellems RE and Butow RA (1972) Cytoplasmic-type 80 S ribo-somes associated with yeast mitochondria. I. Evidence for ribosome binding sites on yeast mitochondria. J Biol Chem 247: 8043–8050PubMedGoogle Scholar
  88. Kerscher O, Holder J, Srinivasan M, Leung RS and Jensen RE (1997) The Tim54p-Tim22p complex mediates insertion of proteins into the mitochondrial inner membrane. J Cell Biol 139:1663–1675PubMedCrossRefGoogle Scholar
  89. Kerscher O, Sepuri NB and Jensen RE (2000) Timl8p is a new component of the Tim54p-Tim22p translocon in the mitochondrial inner membrane. Mol Biol Cell 11: 103–116PubMedCrossRefGoogle Scholar
  90. Koehler CM, Murphy MP, Bally NA, Leuenberger D, Oppliger W, Dolfini L, Junne T, Schatz G and Or E (2000) Timl8p, a new subunit of the Tim22 complex that mediates insertion of imported proteins into the yeast mitochondrial inner membrane. Mol Biol Cell 20: 1187–1193CrossRefGoogle Scholar
  91. Komiya T, Hachiya N, Sakaguchi M, Omura T and Mihara K (1994) Recognition of mitochondria-targeting signals by a cytosolic import stimulation factor, MSF. J Biol Chem 269: 30893–30897PubMedGoogle Scholar
  92. Korsmeyer SJ (1992) Bcl–2: an antidote to programmed cell death. Cancer Surv 15: 105–118.PubMedGoogle Scholar
  93. Kozjak y Wiedemann N, Milenkovic D, Lohaus C, Meyer HE, Guiard B, Meisinger C and Pfanner N (2003) An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J Biol Chem 278:48520–48523CrossRefGoogle Scholar
  94. Kumar AM and Soil D (1992) Arabidopsis alternative oxidase sustains Escherichia coli respiration. Proc Natl Acad Sci USA 89: 10842–10846.PubMedCrossRefGoogle Scholar
  95. Lain B, Iriarte A and Martinez-Carrion M (1994) Dependence of the folding and import of the precursor to mitochondrial aspartate aminotransferase on the nature of the cell-free translation system. J Biol Chem 269: 15588–15596PubMedGoogle Scholar
  96. Laloi M (1999) Plant mitochondria carriers: an overview. Cell Mol Life Sci 56: 918–944PubMedCrossRefGoogle Scholar
  97. Lauring B, Kreibich G and Weidmann M (1995) The intrinsic ability of ribosomes to bind to endoplasmic reticulum membranes is regulated by signal recognition particle and nascent-polypeptide-associated complex. Proc Natl Acad Sci USA 92: 9435–9439PubMedCrossRefGoogle Scholar
  98. Lee CM, Sedman J, Neupert W and Stuart RA (1999) The DNA helicase, Hmilp, is transported into mitochondria by a C–terminal cleavable targeting signal. J Biol Chem 274: 20937–20942PubMedCrossRefGoogle Scholar
  99. Lee M-N and Whelan J (2004) Identification of signals required for import of the soybean FAd subunit of ATP synthase into mitochondria. Plant Mol Biol (in press)Google Scholar
  100. Lemaire C, Hamel P, Velours J and Dujardin G (2000) Absence of the mitochondrial AAA protease Ymelp restores F0–ATPase Subunit accumulation in an oxal deletion mutant of Saccharomyces cerevisiae. J Biol Chem 275: 23471–23475PubMedCrossRefGoogle Scholar
  101. Li H and Chen LJ (1997) A novel chloroplastic outer membrane-targeting signal that functions at both termini of passenger polypeptides. J Biol Chem 272: 10968–10974PubMedCrossRefGoogle Scholar
  102. Lister R, Chew O, Lee M-L, Heazlewood JL, Clifton R, Parker KL, Millar AH and Whelan J (2004) The mitochondrial protein import apparatus of Arabidopsis: a genomic and proteomic characterisation. Plant Physiol 134: 777–789PubMedCrossRefGoogle Scholar
  103. Lister R, Chew O, Rudhe C, Lee MN and Whelan J (2001) Arabidopsis thaliana ferrochelatase–I and –II are not imported into Arabidopsis mitochondria. FEBS Lett 506: 291–295PubMedCrossRefGoogle Scholar
  104. Lister R, Mowday B, Whelan J and Millar AH (2002) Zinc-dependent intermembrane space proteins stimulate import of carrier proteins into plant mitochondria. Plant J 30: 555–566PubMedCrossRefGoogle Scholar
  105. Lister R, Murcha MW and Whelan J (2003) The mitochondrial protein import machinery of plants (MPIMP) database. Nucleic Acids Res 31: 325–327PubMedCrossRefGoogle Scholar
  106. Lithgow T (2000) Targeting of proteins to mitochondria. FEBS Lett 476: 22–26PubMedCrossRefGoogle Scholar
  107. Macasev D, Newbigin E, Whelan J Lithgow T (2000) How do plant mitochondria avoid importing chloroplast proteins? Components of the import apparatus Tom20 and Tom22 from Arabidopsis differ from their fungal counterparts. Plant Physiol 123:811–816PubMedCrossRefGoogle Scholar
  108. Macasev D, Whelan J, Newbigin E, de Castro Silva Filho M and Lithgow T (2004) Tom22\ an 8 kDa subunit of the Translocase in the Outer membrane of Mitochondria in plant cells, functions as a receptor for protein import. Mol Biol Evol (in press)Google Scholar
  109. Marechal-Drouard L, Small I, Weil JH and Dietrich A (1995) Transfer RNA import into plant mitochondria. Methods Enzymol 260: 310–327PubMedCrossRefGoogle Scholar
  110. Margeot A, Blugeon C, Sylvestre J, Vialette S, Jacq C and Corral-Debrinski M (2002) In Saccharomyces cerevisiae, ATP2 mRNA sorting to the vicinity of mitochondria is essential for respiratory function. EMBO J 21: 6893–6904PubMedCrossRefGoogle Scholar
  111. Martin NC and Hopper AK (1982) Isopentenylation of both cytoplasmic and mitochondrial tRNA is affected by a single nuclear mutation. J Biol Chem 257: 10562–10565PubMedGoogle Scholar
  112. Matouschek A, Pfanner N and Voos W (2000) Protein unfolding by mitochondria. EMBO Rep 1: 404–10PubMedCrossRefGoogle Scholar
  113. May T and Soil J (2000) 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12: 53–64PubMedGoogle Scholar
  114. Menand B, Marechal-Drouard L, Sakamoto W, Dietrich A and Wintz H (1998) A single gene of chloroplast origin codes for mitochondrial and chloroplastic methionyl-tRNA synthetase in Arabidopsis thaliana. Proc Natl Acad Sci USA 95: 11014–11019PubMedCrossRefGoogle Scholar
  115. Michaud NR, Fabian JR, Mathes KD and Morrison DK (1995) 14-3-3 is not essential for Raf-1 function: identification of Raf–1 proteins that are biologically activated in a 14–3–3– and Ras-independent manner. Mol Cell Biol 15: 3390–3397PubMedGoogle Scholar
  116. Millar AH and Heazlewood JL (2003) Genomic and proteomic analysis of mitochondrial carrier proteins in Arabidopsis. Plant Physiol 131: 443–453PubMedCrossRefGoogle Scholar
  117. Mokranjac D, Paschen SA, Kozany C, Prokisch H, Hoppins SC, Nargang FE, Neupert W and Hell K (2003) Tim50, a novel component of the TIM23 preprotein translocase of mitochondria. EMBO J 22: 816–825PubMedCrossRefGoogle Scholar
  118. Mooney B and Harmey MA (1996) The occurrence of hsp70 in the outer membrane of plant mitochondria. Biochem Biophys Res Comm 218: 309–313PubMedCrossRefGoogle Scholar
  119. Mori H and Cline K (2001) Post-translational protein translocation into thylakoids by the Sec and DeltapH-dependent pathways. Biochim Biophys Acta 1541: 80–90PubMedCrossRefGoogle Scholar
  120. Murcha MW, Huang T and Whelan J (1999) Import of Precursor Proteins into Mitochondria from Soybean Tissues During Development. FEBS Lett 464: 53–59PubMedCrossRefGoogle Scholar
  121. Murcha MW, Lister R, Ho AY and Whelan J (2003) Identification, expression, and import of components 17 and 23 of the inner mitochondrial membrane translocase from Arabidopsis. Plant Physiol 131: 1737–1747PubMedCrossRefGoogle Scholar
  122. Muto T, Obita T, Abe Y, Shodai T, Endo T and Kohda D (2001) NMR identification of the Tom20 binding segment in mitochondrial presequences. J Mol Biol 306: 137–143PubMedCrossRefGoogle Scholar
  123. Nakamura T, Yamaguchi Y and Sano H (2000) Plant mercapto-sulfurtransferases: molecular cloning, subcellular localisation and enzymatic activities. Eur J Biochem 267: 5621–5630PubMedCrossRefGoogle Scholar
  124. Nargang FE, Preuss M, Neupert W and Herrmann JM (2002) The Oxal protein forms a homooligomeric complex and is an essential part of the mitochondrial export translocase in Neurospora crassa. J Biol Chem 277: 12846–12853PubMedCrossRefGoogle Scholar
  125. Neupert W (1997) Protein import into mitochondria. Annu Rev Biochem 66: 863–917PubMedCrossRefGoogle Scholar
  126. Neupert W and Brunner M (2002) The protein import motor of mitochondria. Nat Rev Mol Cell Biol 3: 555–565.PubMedCrossRefGoogle Scholar
  127. Nguyen M, Millar DG, Yong VW, Korsmeyer SJ and Shore GC (1993) Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence. J Biol Chem 268: 25265–25268.PubMedGoogle Scholar
  128. Ni L, Heard TS and Weiner H (1999) In vivo mitochondrial import. A comparison of leader sequence charge and structural relationships with the in vitro model resulting in evidence for co-translational import. J Biol Chem 274: 12685–12691PubMedCrossRefGoogle Scholar
  129. Ohta S and Schatz G (1984) A purified precursor polypeptide requires a cytosolic protein fraction for import into mitochondria. EMBO J 3: 651–657.PubMedGoogle Scholar
  130. Oliveira V, Campos M, Melo RL, Ferro ES, Camargo ACM, Juliano MA and Juliano L (2001) Substrate specificity characterisation of recombinant metallo oligo-peptidases thimet oligopeptidase and Neuroysin. Biochemistry 40: 4417–1425.PubMedCrossRefGoogle Scholar
  131. Palmer JD (2000) A single birth of all plastids? Nature 405: 32–33PubMedCrossRefGoogle Scholar
  132. Peeters NM, Chapron A, Giritch A, Grandjean O, Lancelin D, Lhomme T, Vivrel A and Small I (2000) Duplication and quadruplication of Arabidopsis thaliana cysteinyl- and asparaginyl-tRNA synthetase genes of organellar origin. J Mol Evol 50: 413–423PubMedGoogle Scholar
  133. Peeters N and Small I (2001) Dual targeting to mitochondria and chloroplasts. Biochim Biophys Acta 1541: 54–63PubMedCrossRefGoogle Scholar
  134. Pfaller R, Pfanner N and Neupert W (1989) Mitochondrial protein import bypass of proteinaceous surface receptors can occur with low specificity and efficiency. J Biol Chem 264: 34–39PubMedGoogle Scholar
  135. Pfanner N and Wiedemann N (2002) Mitochondrial protein import: two membranes, three translocases. Curr Opin Cell Biol 14: 400–411PubMedCrossRefGoogle Scholar
  136. Pilon M, de Boer AD, Knols SL, Koppelman MH, van der Graaf RM, de KruijiT B and Weisbeek PJ (1990) Expression in Escherichia coli and purification of a translocation-competent precursor of the chloroplast protein ferredoxin. J Biol Chem 265: 3358–3361PubMedGoogle Scholar
  137. Pilon M, de Kruijff B and Weisbeek PJ (1992) New insights into the import mechanism of the ferredoxin precursor into chloroplasts. J Biol Chem 267: 2548–2556PubMedGoogle Scholar
  138. Pilon M, Wienk H, Sips W, de Swaaf M, Talboom I, van ’t Hof R, de Korte-Kool G, Demel R, Weisbeek P and de Kruijff B (1995) Functional domains of the ferredoxin transit sequence involved in chloroplast import. J Biol Chem 270: 3882–3893PubMedCrossRefGoogle Scholar
  139. Pratje E, Esser K and Michaelis G (1994) The mitochondrial inner membrane peptidase. In von Heijne G (ed) Signal Peptidases, pp 105–112. Landes, AustinGoogle Scholar
  140. Pratje E and Guiard B (1986) One nuclear gene controls the removal of transient presequences from two yeast proteins: one encoded by the nuclear the other by the mitochondrial genome. EMBO J 5: 1313–1318PubMedGoogle Scholar
  141. Qbadou S, Tien R, Soil J and Schleiff E (2003) Membrane insertion of the chloroplast outer envelope protein, Toc34: constrains for insertion and topology. J Cell Sci 116: 837–846PubMedCrossRefGoogle Scholar
  142. Rassow J, Dekker PJT, van Wilpe S, Meijer M and Soil J (1999) The preprotein translocase of the mitochondrial inner membrane: Function and evolution. J Mol Biol 286: 105–129PubMedCrossRefGoogle Scholar
  143. Rehling P, Pfanner N and Meisinger C (2003) Insertion of hydrophobic membrane proteins into the inner mitochondrial membrane—a guided tour. J Mol Biol 326: 639–657PubMedCrossRefGoogle Scholar
  144. Rehling P, Wiedemann N, Pfanner N and Truscott KN (2001) The mitochondrial import machinery for preproteins. Crit Rev Biochem Mol Biol 36: 291–336PubMedCrossRefGoogle Scholar
  145. Rhoads DM and Mcintosh L (1991) Isolation and characterisation of a cDNA clone encoding an alternative oxidase protein of Sauromatum guttatum (Schott). Proc Natl Acad Sci USA 88:2122–2126PubMedCrossRefGoogle Scholar
  146. Roise D, Horvath SJ, Tomich JM, Richards JH and Schatz G (1986) A chemically synthesized preequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J 5: 1327–1334PubMedGoogle Scholar
  147. Roise D and Schatz G (1988) Mitochondrial Presequences. J Biol Chem 263: 4509–4511PubMedGoogle Scholar
  148. Rudhe C, Chew O, Whelan J and Glaser E (2002a) A novel in vitro system for simultaneous import of precursor proteins into mitochondria and chloroplasts. Plant J 30: 213–220PubMedCrossRefGoogle Scholar
  149. Rudhe C, Clifton R, Whelan J and Glaser E (2002b) N-terminal domain of the dual-targeted pea glutathione reductase signal peptide controls organellar targeting efficiency. J Mol Biol 324: 577–585PubMedCrossRefGoogle Scholar
  150. Sakamoto W, Spielewoy N, Bonnard G, Murata M and Wintz H (2000) Mitochondrial localisation of AtOXAl, an Arabidopsis homologue of yeast Oxalp involved in the insertion and assembly of protein complexes in mitochondrial inner membrane. Plant Cell Physiol 41:1157–1163PubMedCrossRefGoogle Scholar
  151. Samuelson JC, Chen M, Jiang F, Moeller I, Wiedmann M, Phillips G and Dalby RE (2000) YidC mediates membrane protein insertion in bacteria. Nature 406: 637–641PubMedCrossRefGoogle Scholar
  152. Schatz G (1979) How mitochondria import proteins from the cytoplasm. FEBS Lett 103: 203–211PubMedCrossRefGoogle Scholar
  153. Schatz G (1997) Just follow the acid chain. Nature 388: 121–122PubMedCrossRefGoogle Scholar
  154. Schatz G and Mason TL (1974) The biosynthesis of mitochondrial proteins. Annu Rev Biochem 43: 51–87.CrossRefGoogle Scholar
  155. Schatz G and Dobberstein B (1996) Common principles of protein translocation across membranes. Science 271: 1519–1526.PubMedCrossRefGoogle Scholar
  156. Schleiff E (2000) Signals and receptors—the translocation machinery on the mitochondrial surface. J Bioenerg Biomembr 32: 55–66PubMedCrossRefGoogle Scholar
  157. Schleiff E and Turnbull JL (1998) Functional and structural properties of the mitochondrial outer membrane receptor Tom20. Biochemistry 37: 13043–13051PubMedCrossRefGoogle Scholar
  158. Schleiff E and Klosgen RB (2001) Without a little help from ‘my’ friends: direct insertion of proteins into chloroplast membranes? Biochim Biophys Acta 1541: 22–33PubMedCrossRefGoogle Scholar
  159. Schleiff E, Heard TS and Weiner H (1999) Positively charged residues, the helical conformation and the structural flexibility of the leader sequence of pALDH are important for recognition by hTom20. FEBS Lett 461: 9–12PubMedCrossRefGoogle Scholar
  160. Schleiff E, Motzkus M and Soil J (2002a) Chloroplast protein import inhibition by a soluble factor from wheat germ lysate. Plant Mol Biol 50: 177–185PubMedCrossRefGoogle Scholar
  161. Schleiff E, Soil J, Sveshnikova N, Tien R, Wright S, Dabney-Smith C, Subramanian C and Bruce BD (2002b) Structural and guanosine triphosphate/diphosphate requirements for transit peptide recognition by the cytosolic domain of the chloroplast outer envelope receptor, Toc34. Biochemistry 41: 1934–1946PubMedCrossRefGoogle Scholar
  162. Schulte U, Arretz M, Schneider H, Tropschug M, Wachter C, Neupert W and Weiss H (1989) A family of mitochondrial proteins involved in bioenergetics and biogenesis. Nature 339:147–149PubMedCrossRefGoogle Scholar
  163. Schuster W and Brennicke A (1994) The plant mitochondrial genome: Physical structure, information content, RNA editng and gene migration to the nucleus. Annu Rev Plant Physiol Plant Mol Biol 45: 61–78CrossRefGoogle Scholar
  164. Sheffield WP, Shore GC and Randall SK (1990) Mitochondrial precursor protein: effects of 70-kilodalton heat shock protein on polypeptide folding aggregation and import competence. J Biol Chem 265: 11069–11076PubMedGoogle Scholar
  165. Silva-Filho MC (2003) One ticket for multiple destinations: dual targeting of proteins to distinct subcellular locations. Curr Opin Plant Biol 6: 589–595PubMedCrossRefGoogle Scholar
  166. Silva-Filho MC, Chaumont F, Leterme S and Boutry M (1996) Mitochondrial and chloroplast targeting sequences in tandem modify protein import specificity in plant organelles. Plant Mol Biol 30: 769–780CrossRefGoogle Scholar
  167. Sirrenberg C, Bauer MF, Guiard B, Neupert W and Brunner M (1996) Import of carrier proteins into the mitochondrial inner membrane mediated by Tim22. Nature 384: 582–585PubMedCrossRefGoogle Scholar
  168. Sjoling S and Glaser E (1998) Mitochondrial targeting peptides in plants. Trends Plant Sci 3: 136–140CrossRefGoogle Scholar
  169. Stahl A, Moberg P, Ytterberg J, Panfilov O, Brockenhuus Von Lowenhielm H, Nilsson F and Glaser E (2002) Isolation and identification of a novel mitochondrial metalloprotease (PreP) that degrades targeting presequences in plants. J Biol Chem 277:41931–41939PubMedCrossRefGoogle Scholar
  170. Stein I, Peleg Y, Even-Ram S and Pines O (1994) The single translation product of the FUM1 gene (fumarase) is processed in mitochondria before being distributed between the cytosol and mitochondria in Saccharomyces cerevisiae. Mol Cell Biol 14: 4770–1778PubMedGoogle Scholar
  171. Strobel G, Zollner A, Angermayr M and Bandlow W (2002) Competition of spontaneous protein folding and mitochondrial import causes dual subcellular location of major adenylate kinase. Mol Biol Cell 13: 1439–1448PubMedCrossRefGoogle Scholar
  172. Stuart R and Neupert W (2000) Making membranes in bacteria. Nature 406: 575–577PubMedCrossRefGoogle Scholar
  173. Surpin M, Larkin RM and Chory J (2002) Signal transduction between the chloroplast and the nucleus. Plant Cell 14 Suppl: S327–338Google Scholar
  174. Sveshnikova N, Soil J and Schleiff E (2000) Toc34 is a preprotein receptor regulated by GTP and phosphorylation. Proc Natl Acad Aci USA 97: 4973–980CrossRefGoogle Scholar
  175. Sweetlove LJ, Mowday B, Hebestreit HF, Leaver CJ and Millar AH (2001) Nucleoside diphosphate kinase III is localised to the inter-membrane space in plant mitochondria. FEBS Lett 254: 1–5Google Scholar
  176. Sylvestre J, Vialette S, Corral Debrinski M and Jacq C (2003) Long mRNAs coding for yeast mitochondrial proteins of prokaryotic origin preferentially localize to the vicinity of mitochondria. Genome Biol 4: R44PubMedCrossRefGoogle Scholar
  177. Tanudji M, Sjoling S, Glaser E and Whelan J (1999) Signals required for the import and processing of the alternative oxidase into mitochondria. J Biol Chem 274: 1286–1293PubMedCrossRefGoogle Scholar
  178. Taylor AB, Smith BS, Kitada S, Kojima K, Miyaura H, Otwinowski Z, Ito A and Deisenhofer J (2001) Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences. Structure 9: 615–625PubMedCrossRefGoogle Scholar
  179. Taylor NL, Rudhe C, Hulett JM, Lithgow T, Glaser E, Day DA, Millar AH and Whelan J (2003) Environmental stresses inhibit and stimulate different import pathways in plant mitochondria. FEBS Lett 547: 125–130PubMedCrossRefGoogle Scholar
  180. Theg SM and Geske FJ (1992) Biophysical characterisation of a transit peptide directing chloroplast protein Import. Biochemistry 31: 5053–5060PubMedCrossRefGoogle Scholar
  181. Truscott KN, Kovermann P, Geissler A, Merlin A, Meijer M, Driessen AJM, Rassow J, Pfanner N and Wagner R (2001) A presequence- and voltage-sensitive channel of the mitochondrial preprotein translocase fromed by Tim23. Nature Structural Biology 8: 1074–1082PubMedCrossRefGoogle Scholar
  182. Truscott K and Pfanner N (1999) Import of carrier proteins into mitochondria. Biol Chem 380: 1151–1156PubMedCrossRefGoogle Scholar
  183. Truscott KN, Voos W, Frazier AE, Lind M, Li Y, Geissler A, Dudek J, Müller H, Sickmann A, Meyer HE, Meisinger C, Guiard B, Rehling P and Pfanner N (2003) A J–protein is an essential subunit of the presequence translocase-associated protein import motor of mitochondria. J Cell Biol 163: 707–713PubMedCrossRefGoogle Scholar
  184. Verner K (1993) Co-translational protein import into mitochondria: an alternative view. Trends Biochem Sci 18: 366–371PubMedCrossRefGoogle Scholar
  185. Von Heijne G (1986) Mitochondrial targeting sequences may form amphiphilic helices. EMBO J 5: 1335–1342Google Scholar
  186. Voos W, Martin H, Krimmer T and Pfanner N (1999) Mechanisms of protein translocation into mitochondria. Biochim Biophys Acta 1422: 235–254PubMedCrossRefGoogle Scholar
  187. Waegemann K, Paulsen H and Soil J (1990) Translocation of proteins into isolated chloroplasts requires cytosolic factors to obtain import competence. FEBS Lett 261: 89–92CrossRefGoogle Scholar
  188. Waegemann K and Soil J (1996) Phosphorylation of the transit sequence of chloroplast precursor proteins. J Biol Chem 271: 6545–6554PubMedCrossRefGoogle Scholar
  189. Watanabe N, Che FS, Iwano M, Takayama S, Yoshida S and Isogai A (2001) Dual targeting of spinach protoporphyrino-gen oxidase II to mitochondria and chloroplasts by alternative use of two in-frame initiation codons. J Biol Chem 276: 20474–20481PubMedCrossRefGoogle Scholar
  190. Werhahn W and Braun HP (2002) Biochemical dissection of the mitochondrial proteome from Arabidopsis thaliana by three-dimensional gel electrophoresis. Electrophoresis 23: 640–646PubMedCrossRefGoogle Scholar
  191. Werhahn W, Jansch L and Braun HP (2003) identification of novel subunits of the TOM complex from Arabidopsis thaliana. Plant Physiol Biochem 41: 407–416CrossRefGoogle Scholar
  192. Werhahn W, Niemeyer A, Jansch L, Kruft V, Schmitz UK and Braun H-P (2001) Purification and characterisation of the preprotein translocase of the outer mitochondrial membrane from Arabidopsis. Identification of multiple forms of Tom 20. Plant Physiol 125:943–954PubMedCrossRefGoogle Scholar
  193. Whelan J, Knorpp C and Glaser E (1990) Sorting of precursor proteins between isolated spinach leaf mitochondria and chloroplasts. Plant Mol Biol 14: 977–982PubMedCrossRefGoogle Scholar
  194. Whelan J, Tanudji MR, Smith MK and Day DA (1996) Evidence for a link between translocation and processing during protein import into soybean mitochondria. Biochim Biophys Acta 1312:48–54PubMedCrossRefGoogle Scholar
  195. Wiedemann N, Pfanner N and Ryan MT (2001) The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J 20: 951–960PubMedCrossRefGoogle Scholar
  196. Wiedmann B, Sakai H, Davis TA and Wiedmann M (1994) A protein complex required for signal-sequence-specific sorting and translocation. Nature 370: 434–440PubMedCrossRefGoogle Scholar
  197. Wienk HL, Czisch M and de Kruijff B (1999) The structural flexibility of the preferredoxin transit peptide. FEBS Lett 453:318–326PubMedCrossRefGoogle Scholar
  198. Winning B, Sarah C, Purdue P, Day C and Leaver CJ (1992) The adenine nucleotide translocator of higher plants is synthesized as a large precursor that is processed upon import into mitochondria. Plant J 2: 763–773PubMedGoogle Scholar
  199. Woolhead CA, Thompson SJ, Moore M, Tissier C, Mant A, Rodger A, Henry R and Robinson C (2001) Distinct Albino3-dependent and -independent pathways for thy-lakoid membrane protein insertion. J Biol Chem 276: 40841–40846PubMedCrossRefGoogle Scholar
  200. Wu C, Seibert FS and Ko K (1994) Identification of chloroplast envelope proteins in close physical proximity to a partially translocated chimeric precursor protein. J Biol Chem 269: 32264–32271PubMedGoogle Scholar
  201. Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ and Cantley LC (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91: 961–971.PubMedCrossRefGoogle Scholar
  202. Yamamoto H, Esaki M, Kanamori T, Tamura Y, Nishikawa S and Endo T (2002) Tim50 is a subunit of the TIM23 complex that links protein translocation across the outer and inner mitochondrial membranes. Cell 111: 519–528.PubMedCrossRefGoogle Scholar
  203. Zara V, Palmieri F, Mahlke K and Pfanner N (1992) The cleavable presequence is not essential for import and assembly of the phosphate carrier of mammalian mitochondria but enhances the specificity and efficiency of import. J Biol Chem 267:12077–12081PubMedGoogle Scholar
  204. Zhang Z and Kim SH (1998) Electron transfer by domain movement in the cytochrome bc 1complex. Nature 392: 677–684.PubMedCrossRefGoogle Scholar
  205. Zhang X-P and Glaser E (2002) Interaction of plant mitochondrial and chloroplast signal peptides with the HSP70 molecular chaperone. Trends Plant Sci 7: 14–21.PubMedCrossRefGoogle Scholar
  206. Zhang X-P, Elofsson A, Andreu D and Glaser E (1999) Interaction of Mitochondrial Presequences with DnaK and Mitochondrial hsp70. J Mol Biol 288: 177–190.PubMedCrossRefGoogle Scholar
  207. Zhang X-P, Sjoling S, Tanudji M, Somogyi L, Andreu D, Eriksson LEG, Graslund A, Whelan J and Glaser E (2001) Mutagenesis and computer modelling approach to study determinants for recognition of signal peptides by the mitochondrial processing peptidase. Plant J 27: 427–438PubMedCrossRefGoogle Scholar
  208. Zoladek T, Vaduva G, Hunter LA, Boguta M, Go BD, Martin NC and Hopper AK (1995) Mutations altering the mitochondrial-cytoplasmic distribution of Mod5p implicate the actin cytoskeleton and mRNA 3’ ends and/or protein synthesis in mitochondrial delivery. Mol Cell Biol 15: 6884–6894.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • James Whelan
    • 1
  • Enrico Schleiff
    • 2
  1. 1.Plant Molecular Biology Group, School of Biomedical and Chemical SciencesUniversity of Western AustraliaCrawleyAustralia
  2. 2.LMU MunchenMunchenGermany

Personalised recommendations