Real Time Visualization of Atomic Motions in Dense Phases

  • S. Bratos
  • J.-CL. Leicknam
  • F. Mirloup
  • R. Vuilleumier
  • G. Gallot
  • M. Wulff
  • A. Plech
  • S. Pommeret
Part of the NATO Science Series book series (NAII, volume 133)


It has always been a dream of physicists and chemists to follow temporal variations of molecular geometry during a chemical reaction in real time, to “film” them in a way similar as in the everyday life. Unfortunately, chemical events take place on tiny time scales comprised between 10 fs and 100 ps, approximately. Visualizing atomic motions thus remained a dream over two centuries. This is no longer true today, consequence of an immense instrumental development the last decades. Two methods are particularly important. The first of them is ultrafast optical spectroscopy employing the recently developed laser technology. In his breakthrough work A. Zewail was able to show how can this method be used to follow the photoelectric dissociation of gaseous ICN in real time[1,2]. It has later been applied to several other problems, and particularly so to visualize OH..O motions in liquid water[3,4]. Unfortunately, visible light interacts predominantly with outer shell rather than with deeper lying core electrons that most directly indicate molecular geometry. It is thus difficult to convert spectral data into data on molecular geometry. The second method refers to time resolved x-ray diffraction and absorption. As x-rays interact predominantly with deeply lying core electrons which are tightly bonded to the nuclei, converting x-ray data into data relative to molecular geometry is, in principle at least, much more straightforward than in optical spectroscopy. Unfortunately, pulsed x-rays techniques are technically very demanding.


Pump Pulse Probe Pulse Molecular Rotation Rotational Anisotropy Probe Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dantus, M., Rosker, M., and Zewail, A.H. (1987) Real-time femtosecond probing of “transition states” in chemical reactions, J. Chem. Phys. 87, 2395–2397.ADSCrossRefGoogle Scholar
  2. 2.
    Bernstein, R.B., and Zewail, A.H. (1989) Femtosecond real-time probing of reactions. III. Inversion to the potential from femtosecond transition-state spectroscopy experiments, J. Chem. Phys. 90, 829–842.ADSCrossRefGoogle Scholar
  3. 3.
    Gale, G., Gallot, G., Hache, F., Lascoux, N., Bratos, S., and Leicknam, J-Cl. (1999), Femtosecond dynamics of hydrogen bonds in liquid water: A real time study, Phys. Rev. Lett. 82, 1068–1071.ADSCrossRefGoogle Scholar
  4. 4.
    Bratos, S., Gale, G., Gallot, G., Hache, F., Lascoux, N., and Leicknam, J-Cl. (2000), Motion of hydrogen bonds in diluted HDO/D20 solutions: direct probing with 150 fs resolution, Phys. Rev. E 61, 5211–5217.ADSCrossRefGoogle Scholar
  5. 5.
    Rose-Petruck, C, Jimenez, R., Guo, T., Cavalleri, A., Siders, C.W., Ráksi, F., Squier, J.A., Walker, B.C., and Wilson, K.R.(1999), Picosecond-milliangström lattice dynamics measured by ultrafast x-ray diffraction, Nature 398.310–312.ADSCrossRefGoogle Scholar
  6. 6.
    Rousse, A., Rischel, C., Fourmaux, S., Uschmann, I., Sebban, S., Grillon, G., Balcou, Ph., Frster, E., Geindre, J.P., Audebert, P., Gauthier, J.C., and Hulin, D. (2001), Non-thermal melting in semiconductors measured at femtosecond resolution, Nature 410, 65–68.ADSCrossRefGoogle Scholar
  7. 7.
    Srajer, V., Teng, T., Ursby, T., Pradervand, C., Ren, Z., Adachi, S., Schildkamp, W., and Bourgeois, D. (1996), Photolysis of the Carbon Monoxide Complex of Myoglobin: Nanosecond Time-Resolved Crystallography, Science 274, 1726–1729.ADSCrossRefGoogle Scholar
  8. 8.
    Srajer, V., Ren, Z., Teng, T.Y., Schmidt, M., Ursby, T., Bourgeois, D., Pradervand, C., Schildkamp, W., Wulff, M., and Moffat, K., Protein Conformational Relaxation and Ligand Migration in Myoglobin: A Nanosecond to Millisecond Molecular Movie from TimeResolved Laue x-ray Diffraction, Biochemistry 40, 13802–13815.CrossRefGoogle Scholar
  9. 9.
    Shen, Y.R. (1984), The Principles of Nonlinear Optics Wiley,New York.Google Scholar
  10. 10.
    Mukamel, S. (1995), Principles of Nonlinear Optical Spectroscopy, Oxford University Press,New York.Google Scholar
  11. 11.
    Rundle, R.E., and Parasol, M. (1952), O-H stretching frequencies in very short and possibly symmetrical hydrogen bond, J. Chem. Phys. 20, 1487–1488.ADSCrossRefGoogle Scholar
  12. 12.
    Novak, A. (1974), Hydrogen bonding in solids. Correlation of spectroscopic and crystallographic data. Structure and Bonding 18, 177–216.CrossRefGoogle Scholar
  13. 13.
    Mikenda, W. (1986), Stretching frequency versus bond distance correlation of O-D(H)...Y (Y=N, O, S, Se, Cl, Br, I) hydrogen bonds in solid hydrates, J. Mol. Struct. 147, 1–15.ADSCrossRefGoogle Scholar
  14. 14.
    Woutersen, S., Emmerichs, U., and Bakker, H.J. (1997), Femtosecond mid-ir pump-probe spectroscopy of liquid water: evidence for a two-component structure, Science 278, 658–660.ADSCrossRefGoogle Scholar
  15. 15.
    Tao, T. (1969), Time dependent fluorescence depolarization and Brownian rotational diffusion coefficients of macromolecules, Biopolymers 8, 609–632.CrossRefGoogle Scholar
  16. 16.
    Fleming, G.R., Morris, J.M., and Robinson, G.W. (1976), Direct observation of rotational diffusion by picosecond spectroscopy, Chem. Phys. 17, 91–100.ADSCrossRefGoogle Scholar
  17. 17.
    Bratos, S., and Leicknam, J-Cl. (1994), Ultrafast infrared pump-probe spectroscopy of water: a theoretical description, J. Chem. Phys. 101, 4536–4546.ADSCrossRefGoogle Scholar
  18. 18.
    Bratos, S., and Leicknam, J-Cl. (1998), Anisotropy of pump-probe absorption of the hydrated electron. A statistical model, J. Chem. Phys. 109, 9950–9957.ADSCrossRefGoogle Scholar
  19. 19.
    Gallot, G., Bratos, S., Pommeret, S., Lascoux, N., Leicknam, J-Cl., Kozinski, M., Amir, W., and Gale, G.M. (2002), Coupling between molecular rotations and OH..O motions in liquid water: theory and experiment, J. Chem. Phys. 117, 11301–11309.ADSCrossRefGoogle Scholar
  20. 20.
    Nienhuys, H-K., Van Santen, R.A., and Bakker, H.J. (2000), Orientational relaxation of liquid water molecules as an activated process, J. Chem. Phys. 112, 8487–8494.ADSCrossRefGoogle Scholar
  21. 21.
    Bakker, H.J., Woutersen, S., and Nienhuys, H-K. (2000), Reorientational motion and hydrogen-bond stretching dynamics in liquid water, Chem. Phys. 258, 233–245.CrossRefGoogle Scholar
  22. 22.
    Als-Nielsen, S., Morrow, D.MC. (2001), Elements of modern x-ray physics, Wiley,New York.Google Scholar
  23. 23.
    Mulliken, R. (1971), Iodine revisited, J. Chem. Phys. 55, 288–309.ADSCrossRefGoogle Scholar
  24. 24.
    Chuang, T.J., Hoffman, G.W., and Eisenthal, K.B. (1974), Picosecond studies of the cage effect and collision induced predissociation of iodine in liquids, Chem. Phys. Lett. 25, 201–205.ADSCrossRefGoogle Scholar
  25. 25.
    Harris, A.L., Brown, J.K., and Harris, C.B. (1988), The nature of simple photodissociation reactions in liquids on ultrafast time scale, Ann. Rev. Phys. Chem. 39, 341–366.ADSCrossRefGoogle Scholar
  26. 26.
    Bergsma, J. P., Coladonato, M. H., Edelsten, P. M., Kahn, J. D., Wilson, K. R. and Fredkin, D. R. (1986), Transient x-ray scattering calculated from molecular dynamics, J. Chem. Phys. 84, 6151–6160.ADSCrossRefGoogle Scholar
  27. 27.
    Neutze, R., Wouts, R., Techert, S., Davidsson, J., Kocsis, M., Kirrander, A., Schotte, F., and Wulff, M. (2001), Visualizing photochemical dynamics in solution through picosecond x-ray scattering, R R. L. 87, 195–508.Google Scholar
  28. 28.
    Bratos, S., Mirloup, F., Vuilleumier, R., and Wulff, M. (2002) Time-resolved x-ray diffraction: Statistical theory and its application to the photo-physics of molecular iodine, J Chem. Phys. 116, 10615–10625.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • S. Bratos
    • 1
  • J.-CL. Leicknam
    • 1
  • F. Mirloup
    • 1
  • R. Vuilleumier
    • 1
  • G. Gallot
    • 2
  • M. Wulff
    • 3
  • A. Plech
    • 3
  • S. Pommeret
    • 4
  1. 1.Laboratoire de Physique Théorique des LiquidesUniversité Pierre et Marie CurieParis Cedex 05France
  2. 2.Laboratoire d’Optique et BiosciencesEcole PolytechniquePalaiseau CedexFrance
  3. 3.European Synchrotron Radiation FacilityGrenoble CedexFrance
  4. 4.CEA/Saclay, DSM/DRECAM/SCM/URA 331 CNRSGif-sur-YvetteFrance

Personalised recommendations