Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 133))

Abstract

It has always been a dream of physicists and chemists to follow temporal variations of molecular geometry during a chemical reaction in real time, to “film” them in a way similar as in the everyday life. Unfortunately, chemical events take place on tiny time scales comprised between 10 fs and 100 ps, approximately. Visualizing atomic motions thus remained a dream over two centuries. This is no longer true today, consequence of an immense instrumental development the last decades. Two methods are particularly important. The first of them is ultrafast optical spectroscopy employing the recently developed laser technology. In his breakthrough work A. Zewail was able to show how can this method be used to follow the photoelectric dissociation of gaseous ICN in real time[1,2]. It has later been applied to several other problems, and particularly so to visualize OH..O motions in liquid water[3,4]. Unfortunately, visible light interacts predominantly with outer shell rather than with deeper lying core electrons that most directly indicate molecular geometry. It is thus difficult to convert spectral data into data on molecular geometry. The second method refers to time resolved x-ray diffraction and absorption. As x-rays interact predominantly with deeply lying core electrons which are tightly bonded to the nuclei, converting x-ray data into data relative to molecular geometry is, in principle at least, much more straightforward than in optical spectroscopy. Unfortunately, pulsed x-rays techniques are technically very demanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dantus, M., Rosker, M., and Zewail, A.H. (1987) Real-time femtosecond probing of “transition states” in chemical reactions, J. Chem. Phys. 87, 2395–2397.

    Article  ADS  Google Scholar 

  2. Bernstein, R.B., and Zewail, A.H. (1989) Femtosecond real-time probing of reactions. III. Inversion to the potential from femtosecond transition-state spectroscopy experiments, J. Chem. Phys. 90, 829–842.

    Article  ADS  Google Scholar 

  3. Gale, G., Gallot, G., Hache, F., Lascoux, N., Bratos, S., and Leicknam, J-Cl. (1999), Femtosecond dynamics of hydrogen bonds in liquid water: A real time study, Phys. Rev. Lett. 82, 1068–1071.

    Article  ADS  Google Scholar 

  4. Bratos, S., Gale, G., Gallot, G., Hache, F., Lascoux, N., and Leicknam, J-Cl. (2000), Motion of hydrogen bonds in diluted HDO/D20 solutions: direct probing with 150 fs resolution, Phys. Rev. E 61, 5211–5217.

    Article  ADS  Google Scholar 

  5. Rose-Petruck, C, Jimenez, R., Guo, T., Cavalleri, A., Siders, C.W., Ráksi, F., Squier, J.A., Walker, B.C., and Wilson, K.R.(1999), Picosecond-milliangström lattice dynamics measured by ultrafast x-ray diffraction, Nature 398.310–312.

    Article  ADS  Google Scholar 

  6. Rousse, A., Rischel, C., Fourmaux, S., Uschmann, I., Sebban, S., Grillon, G., Balcou, Ph., Frster, E., Geindre, J.P., Audebert, P., Gauthier, J.C., and Hulin, D. (2001), Non-thermal melting in semiconductors measured at femtosecond resolution, Nature 410, 65–68.

    Article  ADS  Google Scholar 

  7. Srajer, V., Teng, T., Ursby, T., Pradervand, C., Ren, Z., Adachi, S., Schildkamp, W., and Bourgeois, D. (1996), Photolysis of the Carbon Monoxide Complex of Myoglobin: Nanosecond Time-Resolved Crystallography, Science 274, 1726–1729.

    Article  ADS  Google Scholar 

  8. Srajer, V., Ren, Z., Teng, T.Y., Schmidt, M., Ursby, T., Bourgeois, D., Pradervand, C., Schildkamp, W., Wulff, M., and Moffat, K., Protein Conformational Relaxation and Ligand Migration in Myoglobin: A Nanosecond to Millisecond Molecular Movie from TimeResolved Laue x-ray Diffraction, Biochemistry 40, 13802–13815.

    Article  Google Scholar 

  9. Shen, Y.R. (1984), The Principles of Nonlinear Optics Wiley,New York.

    Google Scholar 

  10. Mukamel, S. (1995), Principles of Nonlinear Optical Spectroscopy, Oxford University Press,New York.

    Google Scholar 

  11. Rundle, R.E., and Parasol, M. (1952), O-H stretching frequencies in very short and possibly symmetrical hydrogen bond, J. Chem. Phys. 20, 1487–1488.

    Article  ADS  Google Scholar 

  12. Novak, A. (1974), Hydrogen bonding in solids. Correlation of spectroscopic and crystallographic data. Structure and Bonding 18, 177–216.

    Article  Google Scholar 

  13. Mikenda, W. (1986), Stretching frequency versus bond distance correlation of O-D(H)...Y (Y=N, O, S, Se, Cl, Br, I) hydrogen bonds in solid hydrates, J. Mol. Struct. 147, 1–15.

    Article  ADS  Google Scholar 

  14. Woutersen, S., Emmerichs, U., and Bakker, H.J. (1997), Femtosecond mid-ir pump-probe spectroscopy of liquid water: evidence for a two-component structure, Science 278, 658–660.

    Article  ADS  Google Scholar 

  15. Tao, T. (1969), Time dependent fluorescence depolarization and Brownian rotational diffusion coefficients of macromolecules, Biopolymers 8, 609–632.

    Article  Google Scholar 

  16. Fleming, G.R., Morris, J.M., and Robinson, G.W. (1976), Direct observation of rotational diffusion by picosecond spectroscopy, Chem. Phys. 17, 91–100.

    Article  ADS  Google Scholar 

  17. Bratos, S., and Leicknam, J-Cl. (1994), Ultrafast infrared pump-probe spectroscopy of water: a theoretical description, J. Chem. Phys. 101, 4536–4546.

    Article  ADS  Google Scholar 

  18. Bratos, S., and Leicknam, J-Cl. (1998), Anisotropy of pump-probe absorption of the hydrated electron. A statistical model, J. Chem. Phys. 109, 9950–9957.

    Article  ADS  Google Scholar 

  19. Gallot, G., Bratos, S., Pommeret, S., Lascoux, N., Leicknam, J-Cl., Kozinski, M., Amir, W., and Gale, G.M. (2002), Coupling between molecular rotations and OH..O motions in liquid water: theory and experiment, J. Chem. Phys. 117, 11301–11309.

    Article  ADS  Google Scholar 

  20. Nienhuys, H-K., Van Santen, R.A., and Bakker, H.J. (2000), Orientational relaxation of liquid water molecules as an activated process, J. Chem. Phys. 112, 8487–8494.

    Article  ADS  Google Scholar 

  21. Bakker, H.J., Woutersen, S., and Nienhuys, H-K. (2000), Reorientational motion and hydrogen-bond stretching dynamics in liquid water, Chem. Phys. 258, 233–245.

    Article  Google Scholar 

  22. Als-Nielsen, S., Morrow, D.MC. (2001), Elements of modern x-ray physics, Wiley,New York.

    Google Scholar 

  23. Mulliken, R. (1971), Iodine revisited, J. Chem. Phys. 55, 288–309.

    Article  ADS  Google Scholar 

  24. Chuang, T.J., Hoffman, G.W., and Eisenthal, K.B. (1974), Picosecond studies of the cage effect and collision induced predissociation of iodine in liquids, Chem. Phys. Lett. 25, 201–205.

    Article  ADS  Google Scholar 

  25. Harris, A.L., Brown, J.K., and Harris, C.B. (1988), The nature of simple photodissociation reactions in liquids on ultrafast time scale, Ann. Rev. Phys. Chem. 39, 341–366.

    Article  ADS  Google Scholar 

  26. Bergsma, J. P., Coladonato, M. H., Edelsten, P. M., Kahn, J. D., Wilson, K. R. and Fredkin, D. R. (1986), Transient x-ray scattering calculated from molecular dynamics, J. Chem. Phys. 84, 6151–6160.

    Article  ADS  Google Scholar 

  27. Neutze, R., Wouts, R., Techert, S., Davidsson, J., Kocsis, M., Kirrander, A., Schotte, F., and Wulff, M. (2001), Visualizing photochemical dynamics in solution through picosecond x-ray scattering, R R. L. 87, 195–508.

    Google Scholar 

  28. Bratos, S., Mirloup, F., Vuilleumier, R., and Wulff, M. (2002) Time-resolved x-ray diffraction: Statistical theory and its application to the photo-physics of molecular iodine, J Chem. Phys. 116, 10615–10625.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bratos, S. et al. (2004). Real Time Visualization of Atomic Motions in Dense Phases. In: Samios, J., Durov, V.A. (eds) Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations. NATO Science Series, vol 133. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2384-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2384-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1847-3

  • Online ISBN: 978-1-4020-2384-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics