Advertisement

Basic Concepts and Trends in ab Initio Molecular Dynamics

  • Mark E. Tuckerman
Chapter
  • 202 Downloads
Part of the NATO Science Series book series (NAII, volume 133)

Abstract

The field of ab initio molecular dynamics, in which finite temperature molecular dynamics trajectories are generated using forces obtained from electronic structure calculations performed “on the fly”, is a rapidly evolving and growing technology that allows chemical processes in condensed phases to be studied in an accurate and unbiased way. This article is intended to present the basics of the ab initio molecular dynamics method and to highlight some recent trends. Beginning with a derivation of the method from the Born-Oppenheimer approximation, issues including the density functional representation of electronic structure, basis sets, calculation of observables, and the Car-Parrinello extended Lagrangian algorithm and extensions of the latter are discussed.

Keywords

Molecular Dynamic Calculation Orthogonality Constraint Electronic Structure Method Nuclear Wave Function High Computational Overhead 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. W. Rick and S. J. Stuart, Rev. Comp. Chem. 18, (2002).Google Scholar
  2. 2.
    A. Warshel and R. M. Weiss, J. Am. Chem. Soc. 102, 6218 (1980).CrossRefGoogle Scholar
  3. 3.
    R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    D. K. Remler and P. A. Madden, Mol. Phys. 70, 921 (1990).ADSCrossRefGoogle Scholar
  5. 5.
    M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    G. Galli and M. Parrinello, Computer simulation in chemical physics, NATO ASI Series C 397, 261 (1993).CrossRefGoogle Scholar
  7. 7.
    M. E. Tuckerman, P. J. Ungar, T. von Rosenvinge, and M. L. Klein, J. Phys. Chem. 100, 12878 (1996).CrossRefGoogle Scholar
  8. 8.
    M. J. Gillan, Contemp. Phys. 38, 115 (1997).ADSCrossRefGoogle Scholar
  9. 9.
    M. Parrinello, Solid State Commun. 102, 107 (1997).ADSCrossRefGoogle Scholar
  10. 10.
    D. Marx and J. Flutter, In Modern Methods and Algorithms of Quantum Chemistry J. Grotendorst, ed. (PUBLISHER, Forschungszentrum, Juelich, NIC Series Vol. 1, 2000), pp. 301–449.Google Scholar
  11. 11.
    R. Car, Quant. Struct. Act. Rel. 21, 97 (2002).CrossRefGoogle Scholar
  12. 12.
    M. E. Tuckerman, J. Phys. Condens. Matter 14 (2002).Google Scholar
  13. 13.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).zbMATHGoogle Scholar
  14. 14.
    R. Feynman, Statistical Mechanics. (Benjamin, Reading, (1972)).Google Scholar
  15. 15.
    D. Marx and M. Parrinello, Z. Phys. B 95, 143 (1994).ADSCrossRefGoogle Scholar
  16. 16.
    D. Marx and M. Parrinello, J. Chem. Phys. 104, 4077 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    M. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello, J. Chem. Phys. 104, 5579 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    D. Marx, M. E. Tuckerman, and G. J. Martyna, Comp. Phys. Comm. 118, 166 (1999).ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    K. Laasonen, M. Sprik, M. Parrinello, and R. Car, J. Chem. Phys. 99, 9080 (1993).ADSCrossRefGoogle Scholar
  20. 20.
    E. S. Fois, M. Sprik, and M. Parrinello, Chem. Phys. Lett. 223, 411 (1994).ADSCrossRefGoogle Scholar
  21. 21.
    M. Sprik, J. Hutter, and M. Parrinello, J. Chem. Phys. 105, 1142 (1996).ADSCrossRefGoogle Scholar
  22. 22.
    P. L. Silvestrelli, M. Bernasconi, and M. Parrinello, Chem. Phys. Lett. 277, 478 (1997).ADSCrossRefGoogle Scholar
  23. 23.
    B. L. Trout and M. Parrinello, Chem. Phys. Lett. 288, 343 (1998).ADSCrossRefGoogle Scholar
  24. 24.
    L. D. Site, A. Alavi, and R. M. Lynden-Bell, Mol. Phys. 96, 1683 (1999).ADSCrossRefGoogle Scholar
  25. 25.
    P. L. Silvestrelli and M. Parrinello, Phys. Rev. Lett. 82, 3308 (1999).ADSCrossRefGoogle Scholar
  26. 26.
    M. Sprik, Chem. Phys. 258, 139 (2000).ADSCrossRefGoogle Scholar
  27. 27.
    M. Krack and M. Parrinello, Phys. Chem. Chem. Phys. 2, 2105 (2000).CrossRefGoogle Scholar
  28. 28.
    B. G. Pfrommer, F. Mauri, and S. G. Louie, J. Am. Chem. Soc. 122, 123 (2001).CrossRefGoogle Scholar
  29. 29.
    P. L. Geissler, C. Dellago, D. Chandler, J. Hutter, and M. Parrinello, Science 291, 2121 (2001).ADSCrossRefGoogle Scholar
  30. 30.
    E. Schwegler, G. Galli, F. Gygi, and R. Q. Hood, Phys. Rev. Lett. 87, 265501 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    S. Izvekov and G. A. Voth, J. Chem. Phys. 116, 10372 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    M. Diraison, G. J. Martyna, and M. E. Tuckerman, J. Chem. Phys. 111, 1096 (1999).ADSCrossRefGoogle Scholar
  33. 33.
    E. Tsuchida, Y. Kanada, and M. Tsukada, Chem. Phys. Lett. 311, 236 (1999).ADSCrossRefGoogle Scholar
  34. 34.
    Y. Liu and M. E. Tuckerman, J. Phys. Chem. B 105, 6598 (2001).CrossRefGoogle Scholar
  35. 35.
    J. A. Morrone and M. E. Tuckerman, J. Chem. Phys. 117, 4403 (2002).ADSCrossRefGoogle Scholar
  36. 36.
    J. A. Morrone and M. E. Tuckerman, Chem. Phys. Lett. (submitted).Google Scholar
  37. 37.
    K. Laasonen and M. L. Klein, J. Am. Chem. Soc. 116, 11620 (1994).CrossRefGoogle Scholar
  38. 38.
    K. Laasonen and M. L. Klein, Mol. Phys. 88, 135 (1996).ADSCrossRefGoogle Scholar
  39. 39.
    M. Sprik, J. Phys. Condensed Matter 8, 9405 (1996).ADSCrossRefGoogle Scholar
  40. 40.
    K. Laasonen and M. L. Klein, J. Phys. Chem. A 101, 98 (1997).CrossRefGoogle Scholar
  41. 41.
    E. J. Meijer and M. Sprik, J. Am. Chem. Soc. 120, 6345 (1998).CrossRefGoogle Scholar
  42. 42.
    D. Kim and M. L. Klein, J. Phys. Chem. B 104, 10074 (2000).CrossRefGoogle Scholar
  43. 43.
    Z. Zhu and M. E. Tuckerman, J. Phys. Chem. B 106, 8009 (2002).CrossRefGoogle Scholar
  44. 44.
    B. Chen, J. M. Park, I. Ivanov, G. Tabacchi, M. L. Klein, and M. Parrinello, J. Am. Chem. Soc. 124, 8534 (2002).CrossRefGoogle Scholar
  45. 45.
    M. E. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, J. Phys. Chem. 99, 5749 (1995).CrossRefGoogle Scholar
  46. 46.
    M. E. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, J. Chem. Phys. 103, 150 (1995).ADSCrossRefGoogle Scholar
  47. 47.
    D. Marx, M. E. Tuckerman, J. Hutter, and M. Parrinello, Nature 367, 601 (1999).ADSCrossRefGoogle Scholar
  48. 48.
    D. Marx, M. E. Tuckerman, and M. Parrinello, J. Phys. Condens. Matt. 12, A153 (2000).ADSCrossRefGoogle Scholar
  49. 49.
    M. E. Tuckerman, D. Marx, and M. Parrinello, Nature 417, 925 (2002).ADSCrossRefGoogle Scholar
  50. 50.
    D. E. Sagnella, K. Laasonen, and M. L. Klein, Biophys. J. 71, 1172 (1996).CrossRefGoogle Scholar
  51. 51.
    H. S. Mei, M. E. Tuckerman, D. E. Sagnella, and M. L. Klein, J. Phys. Chem. B 102, 10446 (1998).CrossRefGoogle Scholar
  52. 52.
    M. Pavese, D. R. Berard, and G. A. Voth, Chem. Phys. Lett. 300, 93 (1999).ADSCrossRefGoogle Scholar
  53. 53.
    L. Rosso and M. E. Tuckerman, J. Am. Chem. Soc. (submitted).Google Scholar
  54. 54.
    K. Laasonen, M. Parrinello, R. Car, C. Y. Lee, and D. Vanderbilt, Chem. Phys. Lett. 207, 208 (1993).ADSCrossRefGoogle Scholar
  55. 55.
    K. Laasonen and M. L. Klein, J. Phys. Chem. 98, 10079 (1994).CrossRefGoogle Scholar
  56. 56.
    M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello, Science 275, 817 (1997).CrossRefGoogle Scholar
  57. 57.
    H. Arstila, K. Laasonen, and A. Laaksonen, J. Chem. Phys. 108, 1031 (1998).ADSCrossRefGoogle Scholar
  58. 58.
    P. L. Geissler, C. Dellago, D. Chandler, J. Hutter, and M. Parrinello, Chem. Phys. Lett. 321, 225 (2000).ADSCrossRefGoogle Scholar
  59. 59.
    C. Y. Lee, D. Vanderbilt, K. Laasonen, R. Car, and M. Parrinello, Phys. Rev. Lett. 69, 462 (1992).ADSCrossRefGoogle Scholar
  60. 60.
    C. Y. Lee, D. Vanderbilt, K. Laasonen, R. Car, and M. Parrinello, Phys. Rev. B 47, 4863 (1993).ADSCrossRefGoogle Scholar
  61. 61.
    M. Benoit, M. Bernasconi, and M. Parrinello, Phys. Rev. Lett. 76, 2934 (1996).ADSCrossRefGoogle Scholar
  62. 62.
    M. Bernasconi, M. Benoit, M. Parrinello, G. L. Chiarotti, P. Focher, and E. Tosatti, Physica Scripta A 166, 98 (1996).ADSCrossRefGoogle Scholar
  63. 63.
    M. Bernasconi, P. L. Silvestrelli, and M. Parrinello, Phys. Rev. Lett. 81, 1235 (1998).ADSCrossRefGoogle Scholar
  64. 64.
    M. Benoit, D. Marx, and M. Parrinello, Nature 392, 258 (1998).ADSCrossRefGoogle Scholar
  65. 65.
    M. Benoit, D. Marx, and M. Parrinello, Solid State Ionics 125, 23 (1999).CrossRefGoogle Scholar
  66. 66.
    Z. F. Liu, C. K. Siu, and J. S. Tse, Chem. Phys. Lett. 309, 335 (1999).ADSCrossRefGoogle Scholar
  67. 67.
    A. Putrino and M. Parrinello, Phys. Rev. Lett. 88, 176401 (2002).ADSCrossRefGoogle Scholar
  68. 68.
    J. Sarnthein, A. Pasquarello, and R. Car, Science 275, 1925 (1997).CrossRefGoogle Scholar
  69. 69.
    A. Pasquarello and R. Car, Phys. Rev. Lett. 79, 1766 (1997).ADSCrossRefGoogle Scholar
  70. 70.
    M. Boero, A. Pasquarello, J. Sarnthein, and R. Car, Phys. Rev. Lett. 78, 887 (1997).ADSCrossRefGoogle Scholar
  71. 71.
    A. Pasquarello, J. Sarnthein, and R. Car, Phys. Rev. B 57, 14133 (1998).ADSCrossRefGoogle Scholar
  72. 72.
    A. Pasquarello and R. Car, Phys. Rev. Lett. 80, 5145 (1998).ADSCrossRefGoogle Scholar
  73. 73.
    C. Massobrio, A. Pasquarello, and R. Car, J. Am. Chem. Soc. 121, 2943 (1999).CrossRefGoogle Scholar
  74. 74.
    F. Mauri, A. Pasquarello, B. G. Pfrommer, Y. G. Yoon, and S. G. Louie, Phys. Rev. B 62, R4786 (2000).ADSCrossRefGoogle Scholar
  75. 75.
    M. Benoit, S. Ispas, and M. E. Tuckerman, Phys. Rev. B 64, 224205 (2001).ADSCrossRefGoogle Scholar
  76. 76.
    C. J. Pickard and F. Mauri, Phys. Rev. Lett. 88, 086403 (2002).ADSCrossRefGoogle Scholar
  77. 77.
    M. Boero, M. Parrinello, and K. Terakura, J. Am. Chem. Soc. 120, 2746 (1998).CrossRefGoogle Scholar
  78. 78.
    M. Boero, M. Parrinello, S. Hueffer, and H. Weiss, J. Am. Chem. Soc. 122, 501 (2000).CrossRefGoogle Scholar
  79. 79.
    M. Boero, M. Parrinello, H. Weiss, and S. Hueffer, J. Phys. Chem. A 105, 5096 (2001).CrossRefGoogle Scholar
  80. 80.
    K. C. Haas, W. F. Schneider, A. Curioni, and W. Andreoni, Science 282, 265 (1998).ADSCrossRefGoogle Scholar
  81. 81.
    C. Stampfl and M. Scheffler, Surf. Sci. 435, 119 (2000).Google Scholar
  82. 82.
    K. C. Haas, W. F. Schneider, A. Curioni, and W. Andreoni, J. Phys. Chem. B 104, 5527 (2000).CrossRefGoogle Scholar
  83. 83.
    C. Stampfl, M. V. Ganduglia-Pirovano, K. Reuter, and M. Scheffler, Surf. Sci. 500, 368 (2002).ADSCrossRefGoogle Scholar
  84. 84.
    G. J. Kroes, A. Gross, E. J. Baerends, M. Scheffler, and D. A. McCormack, Acc. Chem. Res. 35, 193 (2002).CrossRefGoogle Scholar
  85. 85.
    M. Saitta and M. L. Klein, Nature 399, 46 (1999).ADSCrossRefGoogle Scholar
  86. 86.
    M. Saitta and M. L. Klein, J. Chem. Phys. 111, 9434 (1999).ADSCrossRefGoogle Scholar
  87. 87.
    M. Saitta and M. L. Klein, J. Am. Chem. Soc. 121, 11827 (1999).CrossRefGoogle Scholar
  88. 88.
    M. Saitta and M. L. Klein, J. Phys. Chem. B 105, 6495 (2001).CrossRefGoogle Scholar
  89. 89.
    S. Piana, D. Sebastiani, P. Carloni, and M. Parrinello, J. Am. Chem. Soc. 123, 8730 (2001).CrossRefGoogle Scholar
  90. 90.
    J. Hutter, P. Carloni, and M. Parrinello, J. Am. Chem. Soc. 118, 871 (1996).Google Scholar
  91. 91.
    U. Roethlisberger and P. Carloni, Intl. J. Quant. Chem. 73, 209 (1999).CrossRefGoogle Scholar
  92. 92.
    W. Andreoni, A. Curioni, and T. Mordasini, IBM J. Res. and Development 45, 397 (2001).CrossRefGoogle Scholar
  93. 93.
    C. Rovira and M. Parrinello, Intl. J. Quant. Chem. 80, 1172 (2000).CrossRefGoogle Scholar
  94. 94.
    C. Rovira, B. Schulze, M. Eichinger, J. D. Evanseck, and M. Parrinello, Biophys. J. 81, 435 (2001).CrossRefGoogle Scholar
  95. 95.
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  96. 96.
    R. G. Parr and W. Yang, Density Functional Theory of atoms and molecules (Oxford University Press, Oxford, 1989).Google Scholar
  97. 97.
    R. M. Dreizler and E. K. U. Gross, Density Functional Theory (Springer-Verlag, Berlin/Heidelberg, 1990).zbMATHCrossRefGoogle Scholar
  98. 98.
    Z. H. Liu, L. E. Carter, and E. A. Carter, J. Phys. Chem. 99, 4355 (1995).CrossRefGoogle Scholar
  99. 99.
    B. D. Martino, M. Celino, and V. Rosato, Comp. Phys. Comm. 120, 255 (1999).ADSCrossRefGoogle Scholar
  100. 100.
    R. A. Friesner, Chem. Phys. Lett. 116, 39 (1985).ADSCrossRefGoogle Scholar
  101. 101.
    G. Lippert, J. Hutter, and M. Parrinello, Mol. Phys. 92, 477 (1997).ADSGoogle Scholar
  102. 102.
    Y. Liu and M. E. Tuckerman, Phys. Rev. Lett. (submitted).Google Scholar
  103. 103.
    P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).MathSciNetADSCrossRefGoogle Scholar
  104. 104.
    A. D. Becke, Phys. Rev. A 38, 3098 (1988).ADSCrossRefGoogle Scholar
  105. 105.
    W. Y. C. Lee and R. C. Parr, Phys. Rev. B 37, 785 (1988).ADSCrossRefGoogle Scholar
  106. 106.
    J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).ADSCrossRefGoogle Scholar
  107. 107.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  108. 108.
    N. C. Handy and A. J. Cohen, Mol. Phys. 99,403 (2001).ADSCrossRefGoogle Scholar
  109. 109.
    A. J. Cohen and N. C. Handy, Mol. Phys. 99, 607 (2001).ADSCrossRefGoogle Scholar
  110. 110.
    N. C. Handy and A. J. Cohen, J. Chem. Phys. 116, 5411 (2002).ADSCrossRefGoogle Scholar
  111. 111.
    Q. Wu and W. Yang, J. Chem. Phys. 116, 515 (2002).ADSCrossRefGoogle Scholar
  112. 112.
    A. D. Becke, J. Chem. Phys. 96, 2155 (1992).ADSCrossRefGoogle Scholar
  113. 113.
    A. D. Becke and M. R. Roussel, Phys. Rev. A 39, 3761 (1989).ADSCrossRefGoogle Scholar
  114. 114.
    A. D. Becke, J. Chem. Phys. 112, 4020 (2000).ADSCrossRefGoogle Scholar
  115. 115.
    E. Proynov, H. Chermette, and D. R. Salahub, J. Chem. Phys. 113, 10013 (2000).ADSCrossRefGoogle Scholar
  116. 116.
    M. Ernzerhof, S. N. Maximoff, and G. E. Scuseria, J. Chem. Phys. 116, 3980 (2002).ADSCrossRefGoogle Scholar
  117. 117.
    J. A. White and D. M. Bird, Phys. Rev. B 50, 4954 (1994).ADSCrossRefGoogle Scholar
  118. 118.
    G. Bachelet, D. Hamann, and M. Schluter, Phys. Rev. B 26, 4199 ((1982)).ADSCrossRefGoogle Scholar
  119. 119.
    N. Troullier and J. L. Martins, Phys. Rev. B 43. 1993 (1991).ADSCrossRefGoogle Scholar
  120. 120.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).ADSCrossRefGoogle Scholar
  121. 121.
    P. E. Bloechl, Phys. Rev. B 50, 17953 (1994).ADSCrossRefGoogle Scholar
  122. 122.
    L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).ADSCrossRefGoogle Scholar
  123. 123.
    X. Gonze, P. Kaeckell, and M. Scheffler, Phys. Rev. B 41, 12264 (1990).ADSCrossRefGoogle Scholar
  124. 124.
    X. Gonze, R. Stumpf, and M. Scheffer, Phys. Rev. B 44, 1991 (1991).Google Scholar
  125. 125.
    M. E. Tuckerman and G. J. Martyna, (To be submitted).Google Scholar
  126. 126.
    R. W. Hockney, Phys. Rev. B 48, 2081 (1993).Google Scholar
  127. 127.
    R. N. Barnett and U. Landmann, Methods Comput. Phys. 9, 136 (1978).Google Scholar
  128. 128.
    G. Martyna and M. Tuckerman, J. Chem. Phys. 110. 2810 (1999).ADSCrossRefGoogle Scholar
  129. 129.
    P. Minary, M. E. Tuckerman, K. A. Pihakari, and G. J. Martyna, J. Chem. Phys. 116, 5351 (2002).ADSCrossRefGoogle Scholar
  130. 130.
    M. E. Tuckerman, P. Minary, K. A. Pihakari, and G. J. Martyna, In Computational Methods for Macromolecules: Challenges and Applications T. Schlick and H. H. Gan, eds. (PUBLISHER, Springer, Berlin, 2002), p. 381.CrossRefGoogle Scholar
  131. 131.
    J. J. Mortensen and M. Parrinello, J. Phys. Chem. B 104, 2901 (2000).CrossRefGoogle Scholar
  132. 132.
    J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phys. 82, 1400 (1985).ADSCrossRefGoogle Scholar
  133. 133.
    J. T. Muckerman, Chem. Phys. Lett. 173, 200 (1990).ADSCrossRefGoogle Scholar
  134. 134.
    D. T. Colbert and W. H. Miller, J. Chem. Phys. 96, 1982 (1992).ADSCrossRefGoogle Scholar
  135. 135.
    R. G. Littlejohn, M. Cargo, T. Carrington, K. A. Mitchell, and B. Poirier, J. Chem. Phys. 116, 8691 (2002).ADSCrossRefGoogle Scholar
  136. 136.
    S. Guerin and H. R. Jauslin, Comp. Phys. Comm. 121–122.496 (1999).CrossRefGoogle Scholar
  137. 137.
    L. Rosso, P. Minary, Z. Zhu, and M. E. Tuckerman, J. Chem. Phys. 116, 4389 (2002).ADSCrossRefGoogle Scholar
  138. 138.
    Although the problem could just as well be formulated in terms of an extended Hamiltonian as in the simple x-y model, we prefer to use the Lagrangian formulation as in the original CP paper [3].Google Scholar
  139. 139.
    M. E. Tuckerman and M. Parrinello, J. Chem. Phys. 101, 1301 (1994).ADSGoogle Scholar
  140. 140.
    K. Laasonen, R. Car, C. Lee, and D. Vanderbilt, Phys. Rev. B 43, 6796 (1991).ADSCrossRefGoogle Scholar
  141. 141.
    K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt, Phys. Rev. B 47, 10142 (1993).ADSCrossRefGoogle Scholar
  142. 142.
    J. Hutter, M. E. Tuckerman, and M. Parrinello, J. Chem. Phys. 102, 859 (1995).ADSCrossRefGoogle Scholar
  143. 143.
    M. Tuckerman and G. J. Martuna (to be submitted).Google Scholar
  144. 144.
    W. Hoover, Phys. Rev. A 31, 1695 (1985).ADSCrossRefGoogle Scholar
  145. 145.
    G. Martyna, M. Klein, and M. Tuckerman, J. Chem. Phys. 97, 2635 (1992).ADSCrossRefGoogle Scholar
  146. 146.
    P. Blochl and M. Parrinello, Phys. Rev. B 45, 9413 (1991).ADSCrossRefGoogle Scholar
  147. 147.
    P. Minary, G. J. Martyna, and M. E. Tuckerman, J. Chem. Phys. (submitted).Google Scholar
  148. 148.
    P. A. Egelstaff, Adv. Phys. 11, 203 (1962).ADSCrossRefGoogle Scholar
  149. 149.
    R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651 (1993).ADSCrossRefGoogle Scholar
  150. 150.
    R. Resta, Rev. Mod. Phys. 66, 899 (1994).ADSCrossRefGoogle Scholar
  151. 151.
    R. Resta, Phys. Rev. Lett. 80, 1800 (1998).ADSCrossRefGoogle Scholar
  152. 152.
    R. Resta, J. Phys. Condens. Matter 14, R625 (2002).ADSCrossRefGoogle Scholar
  153. 153.
    P. L. Silvestrelli, Phys. Rev. B 59, 9703 (1999).ADSCrossRefGoogle Scholar
  154. 154.
    G. Berghold, C. J. Mundy, A. H. Romero, J. Hutter, and M. Parrinello, Phys. Rev. B 61, 10040 (2000).ADSCrossRefGoogle Scholar
  155. 155.
    N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).ADSCrossRefGoogle Scholar
  156. 156.
    A. Putrino, D. Sebastiani, and M. Parrinello, J. Chem. Phys. 113, 7102 (2000).ADSCrossRefGoogle Scholar
  157. 157.
    S. Baroni, P. Gianozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1985).ADSCrossRefGoogle Scholar
  158. 158.
    X. Gonze and J. P. Vigneron, Phys. Rev. B 39, 13120 (1989).ADSCrossRefGoogle Scholar
  159. 159.
    X. Gonze, Phys. Rev. A 52, 1096 (1995).ADSCrossRefGoogle Scholar
  160. 160.
    D. Sebastiani and M. Parrinello, J. Phys. Chem. A 105, 1951 (2001).CrossRefGoogle Scholar
  161. 161.
    B. J. Berne and R. Pecora, Dynamic Light Scattering (John Wiley and Sons, Inc., New York, 1976).Google Scholar
  162. 162.
    T. Gregor, F. Mauri, and R. Car, J. Chem. Phys. 111, 1815 (1999).ADSCrossRefGoogle Scholar
  163. 163.
    C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001).ADSCrossRefGoogle Scholar
  164. 164.
    F. Mauri and S. Louie, Phys. Rev. Lett. 76, 4246 (1996).ADSCrossRefGoogle Scholar
  165. 165.
    F. Mauri, B. Pfrommer, and S. Louie, Phys. Rev. Lett. 77, 5300 (1996).ADSCrossRefGoogle Scholar
  166. 166.
    F. Mauri, B. Pfrommer, and S. Louie, Phys. Rev. Lett. 79, 2340 (1997).ADSCrossRefGoogle Scholar
  167. 167.
    Y. Yoon, B. Pfrommer, F. Mauri, and S. Louie, Phvs. Rev. Lett. 80.3388 (1998).ADSCrossRefGoogle Scholar
  168. 168.
    F. Mauri, B. Pfrommer, and S. Louie, Phys. Rev. B 60, 2941 (1999).ADSCrossRefGoogle Scholar
  169. 169.
    A. Alavi, J. Kohanoff, M. Parrinello, and D. Frenkel, Phys. Rev. Lett. 73, 2599 (1994).ADSCrossRefGoogle Scholar
  170. 170.
    N. L. Doltsinis and D. Marx, Phys. Rev. Lett. 88, 166–402 (2002).CrossRefGoogle Scholar
  171. 171.
    G. Galli and M. Parrinello, Phvs. Rev. Lett. 69.3547 (1992).ADSCrossRefGoogle Scholar
  172. 172.
    X. P. Li, R. W. Nunes, and D. Vanderbilt, Phys. Rev. B 48, 14646 (1993).CrossRefGoogle Scholar
  173. 173.
    G. Galli and F. Mauri, Phys. Rev. B 50, 4316 (1994).ADSCrossRefGoogle Scholar
  174. 174.
    D. R. Bowler, T. Miyazaki, and M. J. Gillan, J. Phys. Condens. Matter 14, 2781 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Mark E. Tuckerman
    • 1
  1. 1.Dept. of Chemistry and Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations