Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 133))

Abstract

Sophisticated simulation techniques in combination with high-speed computing provide a very powerful tool for the elucidation of structural data and dynamics of solutions, which in several aspects can be superior to any experimental technique. A careful analysis and comparison of simulation results achieved at different levels of accuracy shows that classical simulations, even including 3-body corrections, do not supply sufficiently precise data for all structural details and dynamical processes. As simulation techniques based on small clusters and simple density functionals also fail in the prediction of ion solvate structures, mixed quantum mechanical/molecular mechanical (QM/MM) simulations at Hartree-Fock level with medium-sized basis sets appear as the only viable method within today’s computational affordability to achieve the necessary accuracy for a theoretical approach to the details of microspecies structures and their dynamics in electrolyte solutions. Results of QM/MM-MD simulations for numerous main group and transition metal cations presented here exemplify the capability of this method and clearly show the limits not only of classical simulation techniques, but also of the models being used for the interpretation of experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlrichs, R., M. Ear, M. Haser, H. Horn, and C. Kolmel: 1989, ‘Electronic Structure Calculations on Workstation Computers: The Program System TURBOMOLE’. Chem. Phys.Lett. 162(3), 165–169.

    Article  ADS  Google Scholar 

  2. Ahlrichs, R. and M. von Arnim: 1995, ‘TURBOMOLE, parallel implementation of SCF, density functional, and chemical shift modules’. In: E. Clementi and G. Corongiu (eds.): Methodsand Techniques in Computational Chemistry: METECC-95. Cagliari: STEF, Chapt.13,pp.509–554.

    Google Scholar 

  3. Aquiro, M. A. S., W. Clegg, Q. T. Liu, and A. G. Sykes: 1995, ‘Hexaaquatitanium(III) Tris(p-Toluensulfonate) Trihydrate’. Acta Cryst. pp. 560–562.

    Google Scholar 

  4. Aqvist, J. and A. Warshel: 1993, ‘Simulation of Enzyme Reactions Using Valence Bond Force Fields and Other Hybrid Quantum/Classical Approaches’. Chem. Rev. 93(7), 2523–2544.

    Article  Google Scholar 

  5. Armstrong, C.: 1998, ‘The Vision of the pore’. Science 280, 56.

    Article  Google Scholar 

  6. Becke, A. D.: 1998, ‘Exploring the Limits of Gradient Corrections in Density Functional Theory’. J. Comput. Chem. 20, 63–69.

    Article  Google Scholar 

  7. Berendsen, H. J. C., J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak: 1984, ‘Molecular Dynamics with coupling to an external bath’. J. Phys. Chem. 81, 3684–3690.

    Article  Google Scholar 

  8. Bersuker, I. B.: 2001, ‘Modem Aspects of the Jahn-Teller Effect Theory and Applications To Molecular Problems’. Chem. Rev. 101(4), 1067–1114.

    Article  Google Scholar 

  9. Bopp, P., G. Jansco, and K. Heinzinger: 1983, ‘AN IMPROVED POTENTIAL FOR NON-RIGID WATER MOLECULES IN THE LIQUID PHASE’. Chem. Phys. Lett. 98(2), 129–133.

    Article  ADS  Google Scholar 

  10. Car, R. and M. Parinello: 1985, ‘Unified Approach for Molecular-Dynamics and Density Functional Theory’. Phys. Rev. Lett. 55(22), 2471–2474.

    Article  ADS  Google Scholar 

  11. Clementi, E., H. Kistenmacher, W. Kolos, and S. Romano: 1980,‘Non-Additivity in Water-Ion-Water Interactions’. Theor. Chim. Acta 55, 257–266.

    Article  Google Scholar 

  12. Cummins, P. L. and J. E. Gready: 1997, ‘Coupled Semiempirical Molecular Orbital and Molecular Mechanics Model (QM/MM) for Organic Molecules in Aqueous Solution’. J. Comput. Chem. 18(12), 1496–1512.

    Article  Google Scholar 

  13. Curtiss, L., J. W. Halley, and X. R. Wang: 1992, ‘Jahn Teller effect in Liquids’. Phys. Rev. Lett. 69(16), 2435–2438.

    Article  ADS  Google Scholar 

  14. Gao, J.: 1996, ‘Hybrid Quantum and Molecular Mechanical Simulations: An Alternative Avenue to Solvent Effects in Organics Chemistry’. Ace. Chem. Res. 29(6), 298–305.

    Article  Google Scholar 

  15. Helm, L. and A. E. Merbach: 1999, ‘Water exchange on metal ions: experiments and simulations’. Coord. Chem. Rev. 187, 151–181.

    Article  Google Scholar 

  16. Hertwig, R. H. and W. Koch: 1997, ‘On the parameterization of the local correlation functional. What is Becke-3-LYP?’. Chem. Phys. Lett. 268(5–6), 345–351.

    Article  ADS  Google Scholar 

  17. Impey, R. W., P. A. Madden, and I. R. McDonald: 1983, ‘Hydration and Mobility of Ions in Solution’. J. Phys. Chem. 87(25), 5071–5083.

    Article  Google Scholar 

  18. Inada, Y., H. H. Loeffler, and B. M. Rode: 2002a, ‘Librational, vibrational, and exchange motions of water molecules in aqueous Ni(II) solution: Classical and QM/MM molecular dynamics simulations’. Chem. Phys. Lett. 358, 449–458.

    Article  ADS  Google Scholar 

  19. Inada, Y., A. M. Mohammed, H. H. Loeffler, and B. M. Rode: 2002b, ‘Hydration Structure and Water Exchange Reaction of Nickel(II) Ion: Classical and QM/Mv Simulations’. J Phys. Chem. A 106(29), 6783–6791.

    Article  Google Scholar 

  20. Kerdcharoen, T., K. R. Liedl, and B. M. Rode: 1996, ‘A QM/MM simulation method applied to the solution of Li+ in liquid ammonia’. Chem. Phys. 211, 313–323.

    Article  Google Scholar 

  21. Loeffler, H. H. and B. M. Rode: 2002, The hydration structure of the lithium ion’. J. Chem.Phys. 117(1), 110–117.

    Article  ADS  Google Scholar 

  22. Loeffler, H. H., J. I. Yague, and B. M. Rode: 2002a, ‘Many-Body Effects in Combined Quantum Mechanical/Molecular Mechanical Simulations of Hydrated Manganous Ion’. J. Phys. Chem. A 106, 9529–9532.

    Article  Google Scholar 

  23. Loeffler, H. H., J. I. Yagtie, and B. M. Rode: 2002b, ‘QM/MM-MD Simulation of Hydrated Vanadium(H) Ion’. Chem. Phys. Lett. 363, 367–371.

    Article  ADS  Google Scholar 

  24. Marcus, Y: 1987a, ‘Thermodynamics of ion hydration and its interpretation in terms of acommon model’. Pure & Appl. Cham. 59(9), 1093–1101.

    Article  Google Scholar 

  25. Marcus, Y.: 1987b, ‘The Thermodynamics of Solcation of Ions’. J. Chem. Soc., Faraday Trans. 83, 339–349.

    Article  Google Scholar 

  26. Marcus, Y.: 1991, ‘Thermodynamics of Solvation of Ions. Part 5.—Gibbs Free Energy of Hydration at 298.15 K’. J. Chem. Soc., Faraday Trans. 87(17), 2995–2999.

    Article  Google Scholar 

  27. Marini, G. W., K. R. Liedl, and B. M. Rode: 1999, ‘Investigations of Cu2+ Hydration and the Jahn-Teller Effect in Solution by QM/MM Monte Carlo Simulations’. J. Phys. Chem.A 103(51), 11387–11393.

    Article  Google Scholar 

  28. Nagypal, I. and F. Debreczeni: 1984, ‘NMR Relaxation Studies in Solution of Transition Metal Complexes. XL Dynamics of Equilibria in Aqueous Solutions of the Copper(II)-Ammonia System’. Inorg. Chim. Acta 81, 69–74.

    Article  Google Scholar 

  29. Neilson, G. W. and J. E. Enderby: 1989, The Coordination of Metal Aquaions’. In: Advancesin Inorganic Chemistry, Vol. 34. Academic Press, Inc., pp. 195–218.

    Google Scholar 

  30. Ohtaki, H. and T. Radnai: 1993, ‘Structure and Dynamics of Hydrated Ions’. Chem. Rev. 93(3), 1157–1204.

    Article  Google Scholar 

  31. Palinkas, G. and K. Heinzinger: 1986, ‘Hydration Shell Structure of the Calcium Ion’. Chem. Phys. Lett. 126, 251–254.

    Article  ADS  Google Scholar 

  32. Pasquarello, A., I. Petri, P. S. Salmon, O. Parisel, R. Car, E. Toth, D. H. Powell, H. E. Fischer, L. Helm, and A. Merbach: 2001, ‘First Solvation Shell of the Cu(II) Aqua Ion: Evidence for Fivefold Coordination’. Science 291, 856–859.

    Article  ADS  Google Scholar 

  33. Rode, B. M. and S. M. Islam: 1990, Monte Carlo Simulations with an Improved Potential Function for Cu(II)-Water Including Neighbour Ligand Corrections’. 46, 357–362.

    Google Scholar 

  34. Rode, B. M., C. F. Schwenk, R. Armunanto, T. Remsungnen, and C. Kritayakornupong, ‘unpublished results’.

    Google Scholar 

  35. Samios, J. (ed.): 2002, Novel Approaches to the Dynamics of Liquids: Experiments, Theories and Simulations. Advanced Study Institute.

    Google Scholar 

  36. Schwenk, C. F, H. H. Loeffler, and B. M. Rode: 2001a, ‘Dynamics of the solvation process of Ca2+ in water’. Chem. Phys. Lett. 349(1–2), 99–103.

    Article  ADS  Google Scholar 

  37. Schwenk, C. F., H. H. Loeffler, and B. M. Rode: 2001b, ‘Molecular dynamics simulations of Ca + in water: Comparison of a classical simulation including threebody corrections and Born-Oppenheimer ab initio and density functional theory quantum mechanical/molecular mechanics simulations’. J. Chem. Phys. 115(23), 10808–10813.

    Article  ADS  Google Scholar 

  38. Stillinger, F. H. and A. Rahman: 1978, ‘Revised central force potentials for water’. J. Chem. Phys. 68(2), 666–670.

    Article  ADS  Google Scholar 

  39. Texler, N. R. and B. M. Rode: 1997, ‘Monte Carlo simulations of copper chloride solutions at various concentrations including full 3-body corrections terms’. Chem. Phys. 222, 281–288.

    Article  ADS  Google Scholar 

  40. Tongraar, A., K. R. Liedl, and B. M. Rode: 1997, ‘Solvation of Ca2+ in Water Studied by Born-Oppenheimer ab Initio QM/MM Dynamics’. J. Phys. Chem. A 101(35), 6299–6309.

    Article  Google Scholar 

  41. Tongraar, A., K. R. Liedl, and B. M. Rode: 1998a, ‘Born-Oppenheimer ab Initio QM/MM Dynamics Simulations of Na+ and IC in Water: From Structure Making to Structure Breaking Effects’. J. Phys. Chem. A 102(50), 10340–10347.

    Article  Google Scholar 

  42. Tongraar, A., K. R. Liedl, and B. M. Rode: 1998b, ‘The hydration shell structure of Li+ investigated by Born-Oppenheimer ab initio QM/MM dynamics’. Chem. Phys. Lett. 286, 56–64.

    Article  ADS  Google Scholar 

  43. Tongraar, A. and B. M. Rode: 1999, ‘Preferential Solvation of Li+ in 18.45% Aqueous Ammonia: A Born-Oppenheimer ab Initio Quantum Mechanics/Molecular Mechanics MD Simulation’. J. Phys. Chem. A 103(42). 8524–8527.

    Article  Google Scholar 

  44. Tongraar, A. and B. M. Rode: 2001, ‘A Born-Oppenheimer Ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulation of Preferential Solvation of Na+ in Aqueous Ammonia Solution’. J.Phys. Chem. A 105(2), 506–510.

    Article  Google Scholar 

  45. Tongraar, A., K. Sagarik, and B. M. Rode: 2001a, ‘Effects of Many-Body Interactions on the Preferential Solvation of Mg2+ in Aqueous Ammonia Solution: A BornOppenheimer ab Initio QM/MM Dynamics Study’. J. Phys. Chem. B 105(54), 10559–10564.

    Article  Google Scholar 

  46. Tongraar, A., K. Sagarik, and B. M. Rode: 2001 b, ‘Non-additive contributions on the Hydration Shell structure of Mg2+ studied by Born-Oppenheimer ab Initio Qnauntum Mechanical/Molecular Mechanical Molecular Dynamics Simulation’. Chem. Phys. Lett. 346, 485–491.

    Article  ADS  Google Scholar 

  47. Tongraar, A., K. Sagarik, and B. M. Rode: 2002, Preferential solvation of Ca2+ in aqueous ammonia solution: Classical and combined ab initio quantum mechanical/molecular mechanical molecular dynamics simulations’. 4, 628–634.

    Google Scholar 

  48. Vizoso, S., M. G. Heinzle, and B. M. Rode: 1994, ‘Tlydroxylamine-water: Intermolecular Potential Functionand Simulation of hydrated NH2OH’. J Chem. Soc., Faraday Trans. 90(16), 2377–2344.

    Article  Google Scholar 

  49. von Arnim, M. and R. Ahlrichs: 1998, ‘Performance of Parallel TURBOMOLE for Density Functional Calculations’. J. Comput. Chem. 19(15), 1746–1757.

    Article  Google Scholar 

  50. Yagüe, J. I., A. M. Mohammed, H. Loeffler, and B. M. Rode: 2001, ‘Classical and Mixed Quantum Mechanical/Molecular Mechanical Simulation of Hydrated Manganous Ion’. J. Phys. Chem. A 105(32), 7646–7650.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rode, B.M., Schwenk, C.F., Randolf, B.R. (2004). Classical Versus Quantum Mechanical Simulations: The Accuracy of Computer Experiments in Solution Chemistry. In: Samios, J., Durov, V.A. (eds) Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations. NATO Science Series, vol 133. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2384-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2384-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1847-3

  • Online ISBN: 978-1-4020-2384-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics