Classical Versus Quantum Mechanical Simulations: The Accuracy of Computer Experiments in Solution Chemistry

  • B. M. Rode
  • C. F. Schwenk
  • B. R. Randolf
Part of the NATO Science Series book series (NAII, volume 133)


Sophisticated simulation techniques in combination with high-speed computing provide a very powerful tool for the elucidation of structural data and dynamics of solutions, which in several aspects can be superior to any experimental technique. A careful analysis and comparison of simulation results achieved at different levels of accuracy shows that classical simulations, even including 3-body corrections, do not supply sufficiently precise data for all structural details and dynamical processes. As simulation techniques based on small clusters and simple density functionals also fail in the prediction of ion solvate structures, mixed quantum mechanical/molecular mechanical (QM/MM) simulations at Hartree-Fock level with medium-sized basis sets appear as the only viable method within today’s computational affordability to achieve the necessary accuracy for a theoretical approach to the details of microspecies structures and their dynamics in electrolyte solutions. Results of QM/MM-MD simulations for numerous main group and transition metal cations presented here exemplify the capability of this method and clearly show the limits not only of classical simulation techniques, but also of the models being used for the interpretation of experimental measurements.


Monte Carlo Hydration Shell Aqueous Ammonia Solution Preferential Solvation Hydration Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahlrichs, R., M. Ear, M. Haser, H. Horn, and C. Kolmel: 1989, ‘Electronic Structure Calculations on Workstation Computers: The Program System TURBOMOLE’. Chem. Phys.Lett. 162(3), 165–169.ADSCrossRefGoogle Scholar
  2. 2.
    Ahlrichs, R. and M. von Arnim: 1995, ‘TURBOMOLE, parallel implementation of SCF, density functional, and chemical shift modules’. In: E. Clementi and G. Corongiu (eds.): Methodsand Techniques in Computational Chemistry: METECC-95. Cagliari: STEF, Chapt.13,pp.509–554.Google Scholar
  3. 3.
    Aquiro, M. A. S., W. Clegg, Q. T. Liu, and A. G. Sykes: 1995, ‘Hexaaquatitanium(III) Tris(p-Toluensulfonate) Trihydrate’. Acta Cryst. pp. 560–562.Google Scholar
  4. 4.
    Aqvist, J. and A. Warshel: 1993, ‘Simulation of Enzyme Reactions Using Valence Bond Force Fields and Other Hybrid Quantum/Classical Approaches’. Chem. Rev. 93(7), 2523–2544.CrossRefGoogle Scholar
  5. 5.
    Armstrong, C.: 1998, ‘The Vision of the pore’. Science 280, 56.CrossRefGoogle Scholar
  6. 6.
    Becke, A. D.: 1998, ‘Exploring the Limits of Gradient Corrections in Density Functional Theory’. J. Comput. Chem. 20, 63–69.CrossRefGoogle Scholar
  7. 7.
    Berendsen, H. J. C., J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak: 1984, ‘Molecular Dynamics with coupling to an external bath’. J. Phys. Chem. 81, 3684–3690.CrossRefGoogle Scholar
  8. 8.
    Bersuker, I. B.: 2001, ‘Modem Aspects of the Jahn-Teller Effect Theory and Applications To Molecular Problems’. Chem. Rev. 101(4), 1067–1114.CrossRefGoogle Scholar
  9. 9.
    Bopp, P., G. Jansco, and K. Heinzinger: 1983, ‘AN IMPROVED POTENTIAL FOR NON-RIGID WATER MOLECULES IN THE LIQUID PHASE’. Chem. Phys. Lett. 98(2), 129–133.ADSCrossRefGoogle Scholar
  10. 10.
    Car, R. and M. Parinello: 1985, ‘Unified Approach for Molecular-Dynamics and Density Functional Theory’. Phys. Rev. Lett. 55(22), 2471–2474.ADSCrossRefGoogle Scholar
  11. 11.
    Clementi, E., H. Kistenmacher, W. Kolos, and S. Romano: 1980,‘Non-Additivity in Water-Ion-Water Interactions’. Theor. Chim. Acta 55, 257–266.CrossRefGoogle Scholar
  12. 12.
    Cummins, P. L. and J. E. Gready: 1997, ‘Coupled Semiempirical Molecular Orbital and Molecular Mechanics Model (QM/MM) for Organic Molecules in Aqueous Solution’. J. Comput. Chem. 18(12), 1496–1512.CrossRefGoogle Scholar
  13. 13.
    Curtiss, L., J. W. Halley, and X. R. Wang: 1992, ‘Jahn Teller effect in Liquids’. Phys. Rev. Lett. 69(16), 2435–2438.ADSCrossRefGoogle Scholar
  14. 14.
    Gao, J.: 1996, ‘Hybrid Quantum and Molecular Mechanical Simulations: An Alternative Avenue to Solvent Effects in Organics Chemistry’. Ace. Chem. Res. 29(6), 298–305.CrossRefGoogle Scholar
  15. 15.
    Helm, L. and A. E. Merbach: 1999, ‘Water exchange on metal ions: experiments and simulations’. Coord. Chem. Rev. 187, 151–181.CrossRefGoogle Scholar
  16. 16.
    Hertwig, R. H. and W. Koch: 1997, ‘On the parameterization of the local correlation functional. What is Becke-3-LYP?’. Chem. Phys. Lett. 268(5–6), 345–351.ADSCrossRefGoogle Scholar
  17. 17.
    Impey, R. W., P. A. Madden, and I. R. McDonald: 1983, ‘Hydration and Mobility of Ions in Solution’. J. Phys. Chem. 87(25), 5071–5083.CrossRefGoogle Scholar
  18. 18.
    Inada, Y., H. H. Loeffler, and B. M. Rode: 2002a, ‘Librational, vibrational, and exchange motions of water molecules in aqueous Ni(II) solution: Classical and QM/MM molecular dynamics simulations’. Chem. Phys. Lett. 358, 449–458.ADSCrossRefGoogle Scholar
  19. 19.
    Inada, Y., A. M. Mohammed, H. H. Loeffler, and B. M. Rode: 2002b, ‘Hydration Structure and Water Exchange Reaction of Nickel(II) Ion: Classical and QM/Mv Simulations’. J Phys. Chem. A 106(29), 6783–6791.CrossRefGoogle Scholar
  20. 20.
    Kerdcharoen, T., K. R. Liedl, and B. M. Rode: 1996, ‘A QM/MM simulation method applied to the solution of Li+ in liquid ammonia’. Chem. Phys. 211, 313–323.CrossRefGoogle Scholar
  21. 21.
    Loeffler, H. H. and B. M. Rode: 2002, The hydration structure of the lithium ion’. J. Chem.Phys. 117(1), 110–117.ADSCrossRefGoogle Scholar
  22. 22.
    Loeffler, H. H., J. I. Yague, and B. M. Rode: 2002a, ‘Many-Body Effects in Combined Quantum Mechanical/Molecular Mechanical Simulations of Hydrated Manganous Ion’. J. Phys. Chem. A 106, 9529–9532.CrossRefGoogle Scholar
  23. 23.
    Loeffler, H. H., J. I. Yagtie, and B. M. Rode: 2002b, ‘QM/MM-MD Simulation of Hydrated Vanadium(H) Ion’. Chem. Phys. Lett. 363, 367–371.ADSCrossRefGoogle Scholar
  24. 24.
    Marcus, Y: 1987a, ‘Thermodynamics of ion hydration and its interpretation in terms of acommon model’. Pure & Appl. Cham. 59(9), 1093–1101.CrossRefGoogle Scholar
  25. 25.
    Marcus, Y.: 1987b, ‘The Thermodynamics of Solcation of Ions’. J. Chem. Soc., Faraday Trans. 83, 339–349.CrossRefGoogle Scholar
  26. 26.
    Marcus, Y.: 1991, ‘Thermodynamics of Solvation of Ions. Part 5.—Gibbs Free Energy of Hydration at 298.15 K’. J. Chem. Soc., Faraday Trans. 87(17), 2995–2999.CrossRefGoogle Scholar
  27. 27.
    Marini, G. W., K. R. Liedl, and B. M. Rode: 1999, ‘Investigations of Cu2+ Hydration and the Jahn-Teller Effect in Solution by QM/MM Monte Carlo Simulations’. J. Phys. Chem.A 103(51), 11387–11393.CrossRefGoogle Scholar
  28. 28.
    Nagypal, I. and F. Debreczeni: 1984, ‘NMR Relaxation Studies in Solution of Transition Metal Complexes. XL Dynamics of Equilibria in Aqueous Solutions of the Copper(II)-Ammonia System’. Inorg. Chim. Acta 81, 69–74.CrossRefGoogle Scholar
  29. 29.
    Neilson, G. W. and J. E. Enderby: 1989, The Coordination of Metal Aquaions’. In: Advancesin Inorganic Chemistry, Vol. 34. Academic Press, Inc., pp. 195–218.Google Scholar
  30. 30.
    Ohtaki, H. and T. Radnai: 1993, ‘Structure and Dynamics of Hydrated Ions’. Chem. Rev. 93(3), 1157–1204.CrossRefGoogle Scholar
  31. 31.
    Palinkas, G. and K. Heinzinger: 1986, ‘Hydration Shell Structure of the Calcium Ion’. Chem. Phys. Lett. 126, 251–254.ADSCrossRefGoogle Scholar
  32. 32.
    Pasquarello, A., I. Petri, P. S. Salmon, O. Parisel, R. Car, E. Toth, D. H. Powell, H. E. Fischer, L. Helm, and A. Merbach: 2001, ‘First Solvation Shell of the Cu(II) Aqua Ion: Evidence for Fivefold Coordination’. Science 291, 856–859.ADSCrossRefGoogle Scholar
  33. 33.
    Rode, B. M. and S. M. Islam: 1990, Monte Carlo Simulations with an Improved Potential Function for Cu(II)-Water Including Neighbour Ligand Corrections’. 46, 357–362.Google Scholar
  34. 34.
    Rode, B. M., C. F. Schwenk, R. Armunanto, T. Remsungnen, and C. Kritayakornupong, ‘unpublished results’.Google Scholar
  35. 35.
    Samios, J. (ed.): 2002, Novel Approaches to the Dynamics of Liquids: Experiments, Theories and Simulations. Advanced Study Institute.Google Scholar
  36. 36.
    Schwenk, C. F, H. H. Loeffler, and B. M. Rode: 2001a, ‘Dynamics of the solvation process of Ca2+ in water’. Chem. Phys. Lett. 349(1–2), 99–103.ADSCrossRefGoogle Scholar
  37. 37.
    Schwenk, C. F., H. H. Loeffler, and B. M. Rode: 2001b, ‘Molecular dynamics simulations of Ca + in water: Comparison of a classical simulation including threebody corrections and Born-Oppenheimer ab initio and density functional theory quantum mechanical/molecular mechanics simulations’. J. Chem. Phys. 115(23), 10808–10813.ADSCrossRefGoogle Scholar
  38. 38.
    Stillinger, F. H. and A. Rahman: 1978, ‘Revised central force potentials for water’. J. Chem. Phys. 68(2), 666–670.ADSCrossRefGoogle Scholar
  39. 39.
    Texler, N. R. and B. M. Rode: 1997, ‘Monte Carlo simulations of copper chloride solutions at various concentrations including full 3-body corrections terms’. Chem. Phys. 222, 281–288.ADSCrossRefGoogle Scholar
  40. 40.
    Tongraar, A., K. R. Liedl, and B. M. Rode: 1997, ‘Solvation of Ca2+ in Water Studied by Born-Oppenheimer ab Initio QM/MM Dynamics’. J. Phys. Chem. A 101(35), 6299–6309.CrossRefGoogle Scholar
  41. 41.
    Tongraar, A., K. R. Liedl, and B. M. Rode: 1998a, ‘Born-Oppenheimer ab Initio QM/MM Dynamics Simulations of Na+ and IC in Water: From Structure Making to Structure Breaking Effects’. J. Phys. Chem. A 102(50), 10340–10347.CrossRefGoogle Scholar
  42. 42.
    Tongraar, A., K. R. Liedl, and B. M. Rode: 1998b, ‘The hydration shell structure of Li+ investigated by Born-Oppenheimer ab initio QM/MM dynamics’. Chem. Phys. Lett. 286, 56–64.ADSCrossRefGoogle Scholar
  43. 43.
    Tongraar, A. and B. M. Rode: 1999, ‘Preferential Solvation of Li+ in 18.45% Aqueous Ammonia: A Born-Oppenheimer ab Initio Quantum Mechanics/Molecular Mechanics MD Simulation’. J. Phys. Chem. A 103(42). 8524–8527.CrossRefGoogle Scholar
  44. 44.
    Tongraar, A. and B. M. Rode: 2001, ‘A Born-Oppenheimer Ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulation of Preferential Solvation of Na+ in Aqueous Ammonia Solution’. J.Phys. Chem. A 105(2), 506–510.CrossRefGoogle Scholar
  45. 45.
    Tongraar, A., K. Sagarik, and B. M. Rode: 2001a, ‘Effects of Many-Body Interactions on the Preferential Solvation of Mg2+ in Aqueous Ammonia Solution: A BornOppenheimer ab Initio QM/MM Dynamics Study’. J. Phys. Chem. B 105(54), 10559–10564.CrossRefGoogle Scholar
  46. 46.
    Tongraar, A., K. Sagarik, and B. M. Rode: 2001 b, ‘Non-additive contributions on the Hydration Shell structure of Mg2+ studied by Born-Oppenheimer ab Initio Qnauntum Mechanical/Molecular Mechanical Molecular Dynamics Simulation’. Chem. Phys. Lett. 346, 485–491.ADSCrossRefGoogle Scholar
  47. 47.
    Tongraar, A., K. Sagarik, and B. M. Rode: 2002, Preferential solvation of Ca2+ in aqueous ammonia solution: Classical and combined ab initio quantum mechanical/molecular mechanical molecular dynamics simulations’. 4, 628–634.Google Scholar
  48. 48.
    Vizoso, S., M. G. Heinzle, and B. M. Rode: 1994, ‘Tlydroxylamine-water: Intermolecular Potential Functionand Simulation of hydrated NH2OH’. J Chem. Soc., Faraday Trans. 90(16), 2377–2344.CrossRefGoogle Scholar
  49. 49.
    von Arnim, M. and R. Ahlrichs: 1998, ‘Performance of Parallel TURBOMOLE for Density Functional Calculations’. J. Comput. Chem. 19(15), 1746–1757.CrossRefGoogle Scholar
  50. 50.
    Yagüe, J. I., A. M. Mohammed, H. Loeffler, and B. M. Rode: 2001, ‘Classical and Mixed Quantum Mechanical/Molecular Mechanical Simulation of Hydrated Manganous Ion’. J. Phys. Chem. A 105(32), 7646–7650.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • B. M. Rode
    • 1
  • C. F. Schwenk
    • 1
  • B. R. Randolf
    • 1
  1. 1.Department of Theoretical Chemistry, Institute of General, Inorganic and Theoretical ChemistryUniversity of InnsbruckInnsbruckAustria

Personalised recommendations