Structure, Thermodynamics and Critical Properties of Ionic Fluids

  • Wolffram Schröer
  • Hermann Weingärtner
Part of the NATO Science Series book series (NAII, volume 133)


Ionic fluids such as molten salts and electrolyte solutions are of central interest in Chemical Physics and Physical Chemistry since the first days of those sciences. They play an important role in many applied fields such as electrochemistry, chemical engineering or the geosciences. If compared to simple neutral fluids, two properties provide major challenges for theory, namely the long-range nature of the Coulomb interactions and the high figures of the Coulomb energy at small ion separations.


Monte Carlo Free Energy Density Tricritical Point Coexistence Curve Direct Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See e.g.: Friedman, H. L. and Dale, W. D. T. (1977) Electrolyte solutions at equilibrium, in: Modern Theoretical Chemistry, 5, Part A, 85–135.Google Scholar
  2. 2.
    Pitzer, K. S. (1995) Ionic fluids: Near-critical and related properties, J Phys. Chem., 99, 130–707.CrossRefGoogle Scholar
  3. 3.
    Weingärtner, H. and Schröer, W. (2001) Criticality of ionic fluids, Adv. Chem Phys 11 6 1–66Google Scholar
  4. 4.
    Fisher, M. E. (1995) The story of coulombic criticality, J. Stat. Phys., 75, 1–36.ADSCrossRefGoogle Scholar
  5. 5.
    Stell, G. (1995) Criticality and phase transitions in ionic fluids, J. Stat. Phys., 78, 197–238.ADSCrossRefGoogle Scholar
  6. 6.
    Weingärtner, H., Kleemeier, M., Wiegand, S., and Schröer, W. (1995) Coulombic and non-coulombic contributions to the criticality of ionic fluids, J. Stat. Phys., 78, 169–96.ADSCrossRefGoogle Scholar
  7. 7.
    Buback, M. and Franck, E. U. (1972) Measurements of vapor pressure and critical data of ammonium halides, Ber. Bunsenges. Phys Chem., 76, 350–4.Google Scholar
  8. 8.
    Friedman, H. L. (1972) discussion remark, J. Solution Chem., 2, p. 354.Google Scholar
  9. 9.
    De Lima, M. C. P., Schreiber, D. R., and Pitzer, K. S. (1985) Critical point and phase separation for an ionic system, J. Phys. Chem., 89, 1854–5.CrossRefGoogle Scholar
  10. 10.
    Singh, R.R., and Pitzer, K.S. (1990) Near-critical coexistence curve and critical exponent of an ionic fluid, J Chem. Phys., 92, 6775–8.ADSCrossRefGoogle Scholar
  11. 11.
    Friedman, H.L. and Larsen, B. (1979) Corresponding states for ionic fluids, J. Chem. Phys. 70, 92–100.ADSCrossRefGoogle Scholar
  12. 12.
    Weingärtner, H. (2001) Corresponding states for electrolyte solutions, Pure Appl. Chem., 73, 1733–48.CrossRefGoogle Scholar
  13. 13.
    Hansen, J.-P. and McDonald, I. R. (1986) Theory of Simple Liquids, Academic Press, New York.Google Scholar
  14. 14.
    Debye, P. and Mickel, E. (1923) The theory of electrolytes, Physik. Z., 24, 185–206.zbMATHGoogle Scholar
  15. 15.
    Bjerrum, N. (1927) Ionic association. I. Influence of ionic association on the activity of ions at moderate degrees of association, Kgl. Danske Videnskab. Selskab. Math. fys. Medd., 7, 1–48.Google Scholar
  16. 16.
    Levin, Y. and Fisher, M. E. (1996) Criticality in the hard-sphere ionic fluid, Physica A, 225, 164–220, references cited therein.ADSCrossRefGoogle Scholar
  17. 17.
    Weiss, V. C. and Schröer, W. (1998) Macroscopic theory for equilibrium properties of ionic-dipolar mixtures and application to an ionic model fluid, J Chem. Phys., 108, 7747–57.ADSCrossRefGoogle Scholar
  18. 18.
    Clausius, R. (1857) Über die Elektrizitätsleitung in Elektrolyten (On the electrical Conductance in Electrolytes), Pogg. Ann. 101, 338–60.Google Scholar
  19. 19.
    Arrhenius, S. (1887) Über die Dissoziation der in Wasser gelösten Stoffe (On the dissociation of substances dissolved in water), Z. Phys. Chem., 1, 631–48.Google Scholar
  20. 20.
    Kraus, C. A. (1956) The ion-pair concept: its evolution and some applications, J. Phys. Chem., 60, 129–41.CrossRefGoogle Scholar
  21. 21.
    Nernst, W. (1894), Dielektrizitätskonstante und chemisches Gleichgewicht (Dielectric constant and chemical equilibrium), Z. Phys. Chem., 13, 531–6.Google Scholar
  22. 22.
    Cruse, K. (1960) in: Landolt-Börnstein, Berlin, 6th edition, Vol. II, part 7.Google Scholar
  23. 23.
    Walden, P. and Centnerszwer, M. (1903) Über Verbindungen des Schwefeldioxyds mit Salzen, Z. Phys. Chem., 42, 432–68.Google Scholar
  24. 24.
    Weingärtner, H., Merkel, T., Maurer, U., Conzen, J. P., Glasbrenner, H., and Käshammer, S. (1991) Coulombic and solvophobic liquid-liquid phase-separation in electrolyte solutions, Ber. Bunsenges. Phys. Chem. 95, 1579–86.CrossRefGoogle Scholar
  25. 25.
    Weingärtner, H., Weiss, V. C., and Schröer, W. (2000) Ion association and electrical conductance minimum in Debye-Hückel-based theories of the hard sphere ionic fluid, J. Chem. Phys., 113, 762–70.Google Scholar
  26. 26.
    Schreiber, D. R., De Lima, M. C. P., and Pitzer, K. S. (1987) Electrical conductivity, viscosity, and density of a two-component ionic system at its critical point, J. Phys. Chem., 91, 4087–91.CrossRefGoogle Scholar
  27. 27.
    Onsager, L. (1927) The theory of electrolytes, Physik Z., 28, 277–98.Google Scholar
  28. 28.
    Fuoss, R. M. and Kraus, C. A. (1933) Properties of electrolytic solutions. IV. The conductance minimum and the formation of triple ions due to the action of Coulomb forces, J. Am. Chem. Soc., 55, 2387–99.CrossRefGoogle Scholar
  29. 29.
    Cavell, E. A. S. and Knight, P. C. (1968) Effect of concentration changes on permittivity of electrolyte solutions, Z. Phys. Chem., 57, 331–4.CrossRefGoogle Scholar
  30. 30.
    Gestblom, B. and Songstad, J. (1987) Solvent properties of dichloromethane. VI. Dielectric properties of electrolytes in dichloromethane., Acta Chem. Scand. Ser. B, 41, 396–40.CrossRefGoogle Scholar
  31. 31.
    Weingärtner, H., Nadolny, H. G., and Käshammer, S. (1999) Dielectric properties of an electrolyte solution at low reduced temperature, J. Phys. Chem. B, 103, 4738–43.CrossRefGoogle Scholar
  32. 32.
    Kirkwood, J.G. (1936) The theory of dielectric polarization, J. Chem. Phys., 4, 592–601.ADSCrossRefGoogle Scholar
  33. 33.
    Ramanathan, P. S. and Friedman, H. L. (1971) Refined model for aqueous 1–1–electrolytes, J. Chem. Phys., 54, 1086–99.ADSCrossRefGoogle Scholar
  34. 34.
    Caillol, J. M. (1995) A Monte Carlo study of the dielectric constant of the restricted primitive model of electrolytes on the vapor branch of the coexistence line, J. Chem. Phys., 102, 5471–5479.ADSCrossRefGoogle Scholar
  35. 35.
    Caillol, J. M. and Weis, J. J. (1995) Free energy and cluster structure in the coexistence region of the restricted primitive model, J. Chem. Phys., 102, 7610–21.ADSCrossRefGoogle Scholar
  36. 36.
    Kosterlitz J. M. and Thouless D. J. (1973) Ordering, metastability, and phase transitions in two-dimensional systems., J. Phys. C., 6, 1181–203.ADSCrossRefGoogle Scholar
  37. 37.
    Guissani, Y. and Guillot, B. (1994) Coexisting phases and criticality in NaCl by computer simulation, J. Chem. Phys., 101, 490–509.ADSCrossRefGoogle Scholar
  38. 38.
    Yan, Q. L. and de Pablo J. J. (2001) Phase equilibria and clustering in sizeasymmetric primitive model electrolytes, J. Chem. Phys., 114, 1727–31.ADSCrossRefGoogle Scholar
  39. 39.
    Yan, Q. L. and de Pablo, J. J. (2002) Phase equilibria of charge-, size-, and shape. asymmetrical models of electrolytes, Phys. Rev. Lett., 88, 095504/1–4.ADSCrossRefGoogle Scholar
  40. 40.
    Romero-Enrique, J.M., Orkoulas, G., Panagiotopoulos, A. Z., and Fisher, M. E. (2000) Coexistence and criticality in size-asymmetric hard-core electrolytes, Phys. Rev. Lett., 85, 4558–61.ADSCrossRefGoogle Scholar
  41. 41.
    Høye, J. S., Lebowitz, J. L., and Stell, G. (1974) Generalized mean spherical approximations for polar and ionic fluids, J. Chem. Phys.. 61. 3253–60ADSCrossRefGoogle Scholar
  42. 42.
    Høye, J. S. and Stell, G. (1977) New self-consistent approximations for ionic and polar fluids, J. Chem. Phys., 67, 524–9.ADSCrossRefGoogle Scholar
  43. 43.
    Pini, D., Stell, G., and Wilding, N. B. (1998) A liquid-state theory that remains successful in the critical region, Mol. Phvs.. 95.483–94.ADSCrossRefGoogle Scholar
  44. 44.
    Ebeling, W. (1972) Theory of ion-pair formation in electrolytes, Z. Phys. Chem. (Leipzig), 249, 140–2.Google Scholar
  45. 45.
    Guillot, B. and Guissani, Y. (1996) Towards a theory of coexistence and criticality in real molten salts, Mol. Phys., 87, 37–86.ADSCrossRefGoogle Scholar
  46. 46.
    Zhou, Y., Yeh, S., and Stell, G. (1995) Criticality of charged systems. I. The restricted primitive model, J. Chem. Phis., 102.5785–95.ADSCrossRefGoogle Scholar
  47. 47.
    Zuckerman, D. M., Fisher, M. E., and Bekiranov, S. (2001) Asymetric primitive model electrolytes: Debye-Mickel theory, criticality, and energy bounds, Phys Rev. E, 64, 011206/1–13.ADSGoogle Scholar
  48. 48.
    Schröer, W. (2001) Generalization of the Kirkwood-Fröhlich theory of dielectric polarization for ionic fluids, J. Mol. Liquids, 92. 67–76.CrossRefGoogle Scholar
  49. 49.
    Fröhlich, H. (1958) Theory ofDielectrics, Oxford University Press, Oxford.Google Scholar
  50. 50.
    Sutherland, J. W. H., Nienhuis, G., and Deutch, J. M. (1974) Thermodynamics of pure and multicomponent dipolar hard-sphere fluids, Mol. Phys., 27, 721–39.ADSCrossRefGoogle Scholar
  51. 51.
    Mansoori G. A., Carnahan N. F., Starling, K. E. and Leland, T. W., Jr. (1971) Equilibrium thermodynamic properties of mixture of hard spheres, J. Chem. Phys., 54, 1523–5.ADSCrossRefGoogle Scholar
  52. 52.
    Panagiotopoulos, A. Z. (2000) Monte Carlo methods for phase equilibria of fluids, J. Phys. Cond. Matter, 12, R25-R52.ADSCrossRefGoogle Scholar
  53. 53.
    Panagiotopoulos, A. Z. and Kumar, S. K. (1999) Large lattice discretization effects on the phase coexistence of ionic fluids, Phys. Rev. Lett. 83. 2981–84ADSCrossRefGoogle Scholar
  54. 54.
    Stell, G., Wu, K. C., and Larsen, B. (1976) Critical point in a fluid of charged hard spheres, Phys. Rev. Lett., 37, 1369–72.ADSCrossRefGoogle Scholar
  55. 55.
    See e.g. Weis, J. J. and Levesque, D. (1993) Chain formation in low density dipolar hard spheres: a Monte Carlo study, Phis. Rev. Lett.. 71.2729–32ADSCrossRefGoogle Scholar
  56. 56.
    Bruce, A. D. and Wilding, N. B. (1992), Phys. Rev. Lett., 68, 193–6.ADSCrossRefGoogle Scholar
  57. 57.
    Panagiotopoulos, A. Z.(2002) Critical parameters of the restricted primitive model, J. Chem. Phys., 116, 3007–11.ADSCrossRefGoogle Scholar
  58. 58.
    Caillol, J.-M., Levesque, D. and Weis, J.-J. (2002) Critical behavior of the restricted primitive model revisited., J. Chem. Phys., 116, 10794–800.ADSCrossRefGoogle Scholar
  59. 59.
    Orkoulas, G., Panagiotopoulos, A. Z., and Fisher, M. E. (2000) Criticality and crossover in accessible regimes, Phys. Rev. E, 61, 5930–39.ADSCrossRefGoogle Scholar
  60. 60.
    Orkoulas, G. and Panagiotopoulos, A. Z. (1999) Phase behavior of the restricted primitive model and square-well fluids from Monte Carlo simulations in the grand canonical ensemble, J. Chem. Phys., 110, 1581–90.ADSCrossRefGoogle Scholar
  61. 61.
    Stillinger, F. H. and Lovett, R (1968) Ion pair theory of concentrated electrolytes. I. Basic concepts, J. Chem. Phys., 48, 3858–68.ADSGoogle Scholar
  62. 62.
    Camp, P. J. and Patey, G. N. (1999) Ion association and condensation in primitive models of electrolyte solutions, J. Chem. Phys., 111, 9000–8.ADSCrossRefGoogle Scholar
  63. 63.
    Camp, P. J. and Patey, G. N. (1999) Ion association in model ionic fluids, Phys. Rev. E, 60, 1063–66.ADSCrossRefGoogle Scholar
  64. 64.
    Romero-Enrique, J. M., Rull, L. F., and Panagiotopoulos, A. Z. (2002) Dipolar origin of the gas-liquid coexistence of the hard-core 1:1 electrolyte model., Phys. Rev. E, 66, 041204/1–10.ADSCrossRefGoogle Scholar
  65. 65.
    Kleemeier, M., Wiegand, S., Schröer, W. and Weingärtner, H. (1999) The liquidliquid phase transition in ionic solutions: Coexistence curves of tetra-nbutylammonium pricrate in alkyl alcohols, J. Chem. Phys., 110, 3085–99.ADSCrossRefGoogle Scholar
  66. 66.
    Marsh, K. N., Deev, A., Wu, A. C-T., Tran, E., and Klamt, A. (2002) Room ternperature ionic liquids as replacements for conventional solvents — a review, Kor. J. Chem. Eng., 19, 357–62.CrossRefGoogle Scholar
  67. 67.
    Verschaffelt, J. E. (1900) On the critical isothermal line and the densities of vapor and liquid in isopentane and carbon dioxide, Proc. Kon. Acad., 2, 588–92.Google Scholar
  68. 68.
    See e.g.: Pfeuty, P. and Tolouse, G. (1977) Introduction to Renormalization Group and Critical Phenomena, Wiley, New York.Google Scholar
  69. 69.
    Kayser, R. F. and Raveche, H. J. (1984) Asymptotic density correlations and corrections to scaling for fluids with non-finite range interactions, Phys. Rev. A, 29, 1013–15.ADSCrossRefGoogle Scholar
  70. 70.
    Hensel, F. (1990) Critical behavior of metallic liquids, J. Phys. Condens. Matter, 2 (Suppl. A), SA33-SA45.ADSCrossRefGoogle Scholar
  71. 71.
    Wiegand S., Briggs M. E., Levelt Sengers J. M. H., Kleemeier M. and Schröer W. (1998) Turbidity, light scattering, and coexistence curve data for the ionic binary mixture triethyl n-hexyl ammonium triethyl n-hexyl borate in diphenyl ether., J. Chem. Phys. 109, 9038–51.ADSCrossRefGoogle Scholar
  72. 72.
    Anisimov, M. A. and Sengers, J. V. (2000) The Critical Region, in Equations of State for Fluids and Fluid mixtures, Eds. Sengers, J. V., Kayser, R. F., Peters, C. J., and White, H.J., Elsevier, Amsterdam.Google Scholar
  73. 73.
    Gutowski, K., Anisimov, M. A., and Sengers, J.V. (2001) Crossover criticality in ionic solutions, J. Chem. Phys. 114, 3133–48.ADSCrossRefGoogle Scholar
  74. 74.
    Chieux, P. and Sienko, M. J. (1970) Phase separation and the critical index for liquid-liquid coexistence in the sodium-ammonia system, J. Chem. Phys., 53, 566–70.ADSCrossRefGoogle Scholar
  75. 75.
    Weingärtner, H., Wiegand, S., and Schröer, W. (1992) Near-critical light scattering of an ionic fluid with liquid-liquid phase transition, J. Chem. Phys., 96, 848–51.ADSCrossRefGoogle Scholar
  76. 76.
    Anisimov, M. A., Agayan, V. A. and Gorodetskij, E. E. (2000) Scaling and crossover to tricriticality in polymer solutions JETP Lett., 72, 578–82.Google Scholar
  77. 77.
    See e.g.: Kumar, A., Krishnamurthy, H. R., and Gopal, E. S. R.. (1983) Equilibrium critical phenomena in binary liquid mixtures, Phys. Reports 98, 57–143.ADSCrossRefGoogle Scholar
  78. 78.
    Kholodenko, A. L. and Beyerlein, A. L. (1990) Comment on “Near-critical coexistence curve and critical exponent of an ionic fluid”, J. Chem. Phys., 93, 8405.ADSCrossRefGoogle Scholar
  79. 79.
    Zhang, K. C., Briggs, M. E., Gammon, R. W., and Levelt Sengers, J. M. H. (1992) The susceptibility critical exponent for a nonaqueous ionic binary mixture near a consolute point, J. Chem. Phys., 97, 8692–97.ADSCrossRefGoogle Scholar
  80. 80.
    Kleemeier, M. (2001), Untersuchungen zum kritischen Verhalten des Flüssig-Flüssig Phasenübergangs in ionischen Lösungen, Ph. D. Thesis, University of Bremen.Google Scholar
  81. 81.
    Heimburg, T., Mirzaev, S.Z., and Kaatze, U. (2000) Heat capacity behavior in the critical region of the ionic binary mixture etylammonium nitrate — n-octanol, Phys. Rev. E, 62.4963–76.ADSCrossRefGoogle Scholar
  82. 82.
    Oleinikova, A. and Bonetti, M. (2001) Electrical conductivity of highly concentrated electrolytes near the critical solute point: A study of tetra-nbutylammonium picrate in alcohols of moderate dielectric constant, J. Chem. Phys., 115, 9871–82.ADSCrossRefGoogle Scholar
  83. 83.
    Kleemeier, M., Wiegand, S., Derr, T., Weiss, V., Schröer, W., and Weingärtner, H. (1996) Critical viscosity and Ising-to-mean-field crossover near the upper consolute point of an ionic solution, Ber. Bunsenges. Phys. Chem., 100, 27–32.CrossRefGoogle Scholar
  84. 84.
    Wiegand, S., Berg, R.F. and Levelt Sengers, J. M. H. (1998) Critical viscosity of the ionic mixture triethyl n-hexyl ammonium triethyl n-hexyl borate in diphenyl ether, J. Chem. Phys., 109.4533–45.ADSCrossRefGoogle Scholar
  85. 85.
    Bulavin, L., Oleinikova, A., and Petrovitskij, A. V. (1996) Influence of ions on the critical behavior of a binary mixture near the consolute point, Int. J. Thermophys., 17. 137–45.ADSCrossRefGoogle Scholar
  86. 86.
    Oleinikova, A.; Bulavin, L., and Pipich, V. (1997) Critical anomaly of shear viscosity in a mixture with an ionic impurity, Chem. Phys. Lett., 278, 121–26.ADSCrossRefGoogle Scholar
  87. 87.
    Jacob, J., Anisimov, M. A., Kumar, A., Agayan, V. A. and Sengers, J. V. (2000) Novel phase-transition behavior in an aqueous electrolyte solution, Int. J Thermophys., 21, 1321–38.CrossRefGoogle Scholar
  88. 88.
    Gutkowski K. I., Bianchi H. L. and Japas M. L. (2003) Critical Behavior of a ternaryx ionic system: A controversy, J. Chem. Phys., 118. 2808–14ADSCrossRefGoogle Scholar
  89. 89.
    Wagner, M., Stanga, O., and Schröer, W. (2002) Tricriticality in the ternary system 3-methylpyridine + water + NaBr? Measurements of the viscosity, Phys. Chem. Chem. Phys., 4, 5300–06.CrossRefGoogle Scholar
  90. 90.
    Wagner, M., Stanga, O., and Schröer, W. (2003) Tricriticality in the ternary system 3-methylpyridine + water + NaBr? The coexistence curves, Phys. Chem. Chem. Phys., 5, 1225–34.CrossRefGoogle Scholar
  91. 91.
    Wagner, M., Stanga, O., and Schröer, W. (2003) in preparationGoogle Scholar
  92. 92.
    Luijten, E., Fisher, M.E., and Panagiotopoulos, A. Z. (2002) Universality Class of Criticality in the Restricted Primitive Model Electrolyte, Phys. Rev. Lett., 88, 185701/1–4.ADSCrossRefGoogle Scholar
  93. 93.
    Luijten, E., Fisher, M.E., and Panagiotopoulos, A. Z. (2001) The heat capacity of the restricted primitive model electrolyte, J Chem. Phys., 114, 5468–71 94.ADSCrossRefGoogle Scholar
  94. 93a.
    Valleau, J. and Torrie, G. (1998) Heat capacity of the restricted primitive model near criticality, J. Chem. Phys., 108, 5169–72 95.ADSCrossRefGoogle Scholar
  95. 93b.
    Valleau, J. and Torrie, G. (2002) Further remarks on the heat capacity of the restricted primitive model near criticality, J. Chem. Phys., 117, 3305–3309.ADSCrossRefGoogle Scholar
  96. 96.
    Lee, B. P. and Fisher, M. E. (1996) Density fluctuations in an electrolyte from generalized Debye-Hueckel theory., Phys. Rev. Lett., 76, 2906–9 97.ADSCrossRefGoogle Scholar
  97. 96a.
    Bekiranov, S. and Fisher, M.E. (1999) Diverging correlation lengths in electrolytes: Exact results at low densities, Phys. Rev. E, 59, 492–511 98.ADSCrossRefGoogle Scholar
  98. 96b.
    Kirkwood, J. G. (1934) Statistical mechanics of liquid solutions, Chem. Rev., 19, 275–307.CrossRefGoogle Scholar
  99. 99.
    Lee, B. P. and Fisher, M. E. (1997) Charge oscillations in Debye-Hückel theory, Europhys. Lett., 39, 611–16.ADSCrossRefGoogle Scholar
  100. 100.
    See e.g.: Widom, B. and Rowlinson, J. S. (1979) Translation of: “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density” by J. D. van der Waals, J. Stat. Phys., 20, 197.ADSCrossRefGoogle Scholar
  101. 101.
    See e.g.: Landau, L. D. and Lifshitz, E. M.(1958) Statistical Physics, Pergamon, New York.Google Scholar
  102. 102.
    Rowlinson, J.S. and Widom B.(1982) Molecular Theory of Capillarity , Clarendon, Oxford.Google Scholar
  103. 103.
    Weiss, V.C. and Schröer, W (1997) On the Ginzburg temperature of ionic and dipolar fluids, J. Chem. Phys., 106, 1930–40.ADSCrossRefGoogle Scholar
  104. 104.
    Stell G. (1964) Cluster expansion for classical systems, in H.L. Frisch and J. L. Lebowitz (eds.), The equilibrium theory of classical fluids , Benjamin, New York, pp.171–267.Google Scholar
  105. 105.
    Schröer W. and Weiss V.C. (1998) Ginzburg criterium for the crossover behavior of model fluids, J. Chem. Phys.,109, 8504–8513.ADSCrossRefGoogle Scholar
  106. 106.
    Dickman R.(1999) , unpublished work, cited by Stell G., New results on some ionic —fluid problems in New Approaches to Problems in Liquid State Theory, Caccamo, C., Hansen, J.-P., and Stell, G. (eds.)., NATO ASI Series C, Kluwer, Dordrecht, pp 71–89.Google Scholar
  107. 107.
    Kobelev, V., Kolomeisky, A. B., and Fisher, M. E. (2002) Lattice models of ionic systems, J. Chem. Phys., 116, 7589–98.ADSCrossRefGoogle Scholar
  108. 108.
    Kobelev, V. and Kolomeisky, A.B., Anisotropic lattice models of electrolytes, J. Chem. Phys., 117, 8879–85.Google Scholar
  109. 109.
    A. B., Ciach, A. and Stell, G. (2002) Criticality and tricriticality in ionic systems, Physica A, 306, 220–9.Google Scholar
  110. 110.
    Ciach, A. and Stell, G. (2001) Why the Ising and continuous-space models of ionic systems exhibit essentially different critical behavior, J. Chem. Phys., 114, 382–6.ADSCrossRefGoogle Scholar
  111. 111.
    Levine, Y and Fisher, M.E. (1994) Coulombic criticality in general dimensions, Phys. Rev. Lett., 73, 2716–19.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Wolffram Schröer
    • 1
  • Hermann Weingärtner
    • 2
  1. 1.Institut für Anorganische und Physikalische ChemieUniversität BremenBremenGermany
  2. 2.Physikalische Chemie IIRuhr-Universität BochumBochumGermany

Personalised recommendations