Advertisement

Conformational Transitions in Proteins and Membranes

  • Jeremy C. Smith
  • Zoe Cournia
  • Antoine Taly
  • Alexander L. Tournier
  • Dan Mihailescu
  • G. Matthias Ullmann
Chapter
  • 202 Downloads
Part of the NATO Science Series book series (NAII, volume 133)

Abstract

An understanding of protein and biological membrane function requires the realization that these objects are dynamic. This present survey treats simulationbased methods for investigating internal motions in soluble and membrane proteins and for probing the dynamics of membranes themselves.

Keywords

Electron Transfer Dynamical Transition Photoinduced Electron Transfer Rhodobacter Sphaeroides Inelastic Neutron Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kendrew, J. C., G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff, and D. C. Phillips (1958) A Three-dimensional Model of the Myoglobin Molecule Obtained by X-ray Analysis. Nature 181, 662.ADSCrossRefGoogle Scholar
  2. 2.
    Frauenfelder, H., G. A. Petsko, and D. Tsernoglou (1979) Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280. 558.ADSCrossRefGoogle Scholar
  3. 3.
    Artymiuk, P. J., C. C. Blake, D. E. Grace, S. J. Oatley, D. C. Phillips, and M. J. Sternberg (1979) Crystallographic studies of the dynamic properties of lysozyme. Nature 280, 563.ADSCrossRefGoogle Scholar
  4. 4.
    Karplus, M. and (i. A. Petsko (1990) Molecular dynamics simulations in biology. Nature 347, 631–639.Google Scholar
  5. 5.
    Gerstein, M., A. M. Lesk, and C. Chothia (1994) Structural mechanisms for domain movements in proteins. Biochemistry 33, 6739.CrossRefGoogle Scholar
  6. 6.
    Huber, R. and W. S. J. Bennett (1983) Functional significance of flexibility in proteins. Biopolymers 22, 261.Google Scholar
  7. 7.
    Austin, R. H., K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsalus (1975) Dynamics of ligand binding to myoglobin. Biochemistry 14. 5355.CrossRefGoogle Scholar
  8. 8.
    Frauenfelder, H., S. G. Sligar, and P. G. Wolynes (1991) The energy landscapes and motions of proteins. Science 254, 1598.Google Scholar
  9. 9.
    Ansari, A., J. Berendzen, S. F. Bowne, H. Frauenfelder, I. E. Iben, T. B. Sauke, E. Shyamsunder, and R. D. Young (1985) Protein states and proteinquakes. Proc. Natl. Acad. Sci. USA 82, 5000.Google Scholar
  10. 10.
    Elber, R. and M. Karplus (1987) Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin. Science 235, 318.Google Scholar
  11. 11.
    Ostermann, A., R. Waschipky, F. G. Parak, and G. U. Nienhaus (2000) Ligand binding and conformational motions in myoglobin. Nature 404, 205.Google Scholar
  12. 12.
    Ech-Cherif Kettani, M. A. and J. Dump (1992) Theoretical determination of conformational paths in citrate synthase. Biopolymers 32, 561.Google Scholar
  13. 13.
    Fischer, S. and M. Karplus (1992) Conjugate Peak Refinement: an algorithm for finding reaction paths and accurate transition states in systems with many degrees of freedom. Chem. Phys. Lett. 194, 252–261.Google Scholar
  14. 14.
    Schlitter, J., M. Engels, and P Kruger (1994) Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. J. Mol. Graph. 12. 84.Google Scholar
  15. 15.
    Wroblowski, B., J. F. Diaz, J. Schlitter, and Y. Engelborghs (1997) Modelling pathways of alpha-chymotrypsin activation and deactivation. Protein Eng. 10, 1163.Google Scholar
  16. 16.
    Fitter, J., R. E. Lechner, and N. A. Dencher (1997) Picosecond molecular motions in bacteriorhodopsin from neutron scattering. Biophys. J. 73, 2126.Google Scholar
  17. 17.
    Doster, W., S. Cusack, and W. Petry (1989) Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337, 754.Google Scholar
  18. 18.
    Doster, W., S. Cusack, and W. Petry (1990) Dynamic instability of liquidlike motions in a globular protein observed by inelastic neutron scattering. Phys.Rev.Lett. 65, 1080.ADSCrossRefGoogle Scholar
  19. 19.
    M. Ferrand, M., A. J. Dianoux, W. Petry, and G. Zaccai (1993) Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc. Natl. Acad. Sci. USA 90, 9668.ADSCrossRefGoogle Scholar
  20. 20.
    Reat, V., R. Dunn, M. Ferrand, J. L. Finney, R. M. Daniel, and J. C. Smith (2000) Solvent dependence of dynamic transitions in protein solutions. Proc. Natl. Acad. Sci. USA 97, 9961.Google Scholar
  21. 21.
    Bicout, D. J. and G. Zaccai (2001) Protein flexibility from the dynamical transition: a force constant analysis. Biophys. J. 80, 1115.CrossRefGoogle Scholar
  22. 22.
    Parak, F., E. N. Frolov, R. L. Mossbauer, and V. I. Goldanskii (1981) Dynamics of metmyoglobin crystals investigated by nuclear gamma resonance absorption. J. Mol. Biol. 145, 825.Google Scholar
  23. 23.
    Cohen, S. G., E. R. Bauminger, I. Nowik, S. Ofer, and J. Yariv (1981) Dynamics of the Iron-Containing Core in Crystals of the Iron-Storage Protein, Ferritin, through Mossbauer Spectroscopy. Phys. Rev. Lett. 46, 1244.Google Scholar
  24. 24.
    Knapp, E. W., S. F. Fischer, and F. Parak (1982) Protein Dynamics from Mossbauer Spectra. The Temperature Dependence. J. Am. Chem. Soc. 86, 5042.Google Scholar
  25. 25.
    Tilton, Jr., R. F., J. C. Dewan, and G. A. Petsko (1992) Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochemistry 31, 2469.Google Scholar
  26. 26.
    Rasmussen, B. F., A. M. Stock, D. Ringe, and G. A. Petsko (1992) Crystalline ribonuclease A loses function below the dynamical transition at 220 K. Nature 357, 423.Google Scholar
  27. 27.
    Lee, A. L. and A. J. Wand (2001) Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 411, 501.Google Scholar
  28. 28.
    Green, J. L., J. Fan, and C. A. Angell (1994) The Protein-Glass Analogy: Some Insights from Homopeptide Comparisons. J. Phys. Chem. 98, 13780.Google Scholar
  29. 29.
    Teeter, M. M., A. Yamano, B. Stec, and U. Mohanty (2001) On the nature of a glassy state of matter in a hydrated protein: Relation to protein function. Proc. Natl. Acad. Sci. USA 98, 11242.Google Scholar
  30. 30.
    Parak, F, E. N. Frolov, A. A. Kononenko, R. L. Mossbauer, V. I. Goldanskii, and A. B. Rubin (1980) Evidence for a correlation between the photoinduced electron transfer and dynamic properties of the chromatophore membranes from Rhodospirillum rubrum. FEBS Letters 117, 368.Google Scholar
  31. 31.
    Smith, J., K. Kuczera, and M. Karplus (1990) Dynamics of myoglobin: comparison of simulation results with neutron scattering spectra. Proc. Natl. Acad. Sci. USA 87, 1601.Google Scholar
  32. 32.
    Hayward, J. A. and J. C. Smith (2002) Temperature dependence of protein dynamics: computer simulation analysis of neutron scattering properties. Biophys. J. 82. 1216.Google Scholar
  33. 33.
    Paciaroni, A., S.Cinelli, and G. Onori (2002) Effect of the environment on the protein dynamical transition: a neutron scattering study. Biophys. J. 83, 1157.CrossRefGoogle Scholar
  34. 34.
    Fitter, J. (1999) The temperature dependence of internal molecular motions in hydrated and dry alpha-amylase: the role of hydration water in the dynamical transition of proteins. Biophys. J. 76, 1034.Google Scholar
  35. 35.
    Cordone, L., M. Ferrand, E. Vitrano, and G. Zaccai (1999) Harmonic behavior of trehalose-coated carbon-monoxy-myoglobin at high temperature. Biophys. J. 76, 1043.Google Scholar
  36. 36.
    Steinbach, P. J. and B. R. Brooks (1993) Protein hydration elucidated by molecular dynamics simulation. Proc. Natl. Acad. Sci. USA 90, 9135.Google Scholar
  37. 37.
    Steinbach, P. J. and B. R. Brooks (1996) Hydrated myoglobin’s anharmonic fluctuations are not primarily due to dihedral transitions. Proc. Natl. Acad. Sci. USA 93.55.Google Scholar
  38. 38.
    Hagen, S. J., K. Hofrichter, and W. A. Eaton (1995) Protein reaction kinetics in a roomtemperature glass. Science 269, 959.ADSCrossRefGoogle Scholar
  39. 39.
    Walser, R., A. E. Mark, and W. F. van Gunsteren (2000) On the temperature and pressure dependence of a range of properties of a type of water model commonly used in hightemperature protein unfolding simulations. Biophys. J. 78, 2752.CrossRefGoogle Scholar
  40. 40.
    Tarek, M. and D. J. Tobias (2000) The dynamics of protein hydration water: a quantitative comparison of molecular dynamics simulations and neutron-scattering experiments. Biophys. J. 79, 3244.CrossRefGoogle Scholar
  41. 41.
    Bizzarri, A. R., A. Paciaroni, and S. Cannistraro (2000) Glasslike dynamical behavior of the plastocyanin hydration water. Phys. Rev. E 62, 3991.ADSCrossRefGoogle Scholar
  42. 42.
    Tarek, M. and D. J. Tobias (2002) Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Phys. Rev. Lett. 88, 138101.ADSCrossRefGoogle Scholar
  43. 43.
    Smith, J. C. (1991) Protein Dynamics: Comparison of simulations with inelastic neutron scattering experiments. Q. Rev. Biophys. 24, 227.CrossRefGoogle Scholar
  44. 44.
    Kneller, G. R. and J. C. Smith (1994) Liquid-like side-chain dynamics in myoglobin. J. Mol. Biol. 242, 181.CrossRefGoogle Scholar
  45. 45.
    Vitkup, D., D. Ringe, G. A. Petsko, and M. Karplus (2000) Solvent mobility and the protein ‘glass’ transition. Nat. Struct. Biol. 7, 34.CrossRefGoogle Scholar
  46. 46.
    Hoover, W. G. (1985) Canonical Dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31, 1695.ADSCrossRefGoogle Scholar
  47. 47.
    Tournier, A. L., D. Huang, S. M. Scwarzl, S. Fischer, and J. C. Smith (2002) Timeresolved computational protein biochemistry: Solvent effects on interactions, conformational transitions and equilibrium fluctuations. Faraday Discuss. 122, 243.ADSCrossRefGoogle Scholar
  48. 48.
    Tournier, A. L., J. Xu, and J. C. Smith (2002) submitted. Google Scholar
  49. 49.
    Dellerue, A., A. J. Petrescu, J. C. Smith, and M. C. Bellissent-Funel (2001) Radially softening diffusive motions in a globular protein. Biophys. J. 81, 1666.CrossRefGoogle Scholar
  50. 50.
    Qin, L. and N. M. Kostić (1992) Electron Transfer Reactions of Cytochrome f with Flavin Semiquinones and with Plastocyanin. Importance of Protein-Protein Electrostatic Interactions and of Donor-Acceptor Coupling. B iochemistry 31, 5145–5150.CrossRefGoogle Scholar
  51. 51.
    Qin, L. and N. M. Kostić (1993) Importance of Protein Rearrangement in the ElectronTransfer Reaction between the Physiological Partners Cytochrome f and Plastocyanin. B iochemistry 32, 6073–6080.CrossRefGoogle Scholar
  52. 52.
    Martinez, S. E., D. Huang, A. Szczepaniak, W. A. Cramer, and J. L. Smith (1994) Crystal Structure of Chloroplast Cytochrome f Reveals a Novel Cytochrome Fold and Unexpected Heme Ligation. Structure 2, 95–105.CrossRefGoogle Scholar
  53. 53.
    Ullmann, G. M., E. W. Knapp, and N. M. Kostić (1997) Computational Simulation and Analysis of the Dynamic Assocition between Plastocyanin and Cytochrome f. Consequences for the Electron-Transfer Reaction. J. Am. Chem. Soc. 119.42–52CrossRefGoogle Scholar
  54. 54.
    Ubbink, M., M. Ejdebäck, B. G. Karlson, and D. S. Bendall (1998) The Structure of the Complex of Plastocyanin and Cytochrome f, Determined by Paramagnetic NMR and Restrained Rigid Body Molecular Dynamics. Structure 6,323–335.CrossRefGoogle Scholar
  55. 55.
    Ye, S., C. Shen, T. M. Cotton, and N. M. Kostić (1997) Characterization of ZincSubstituted Cytochrome c by Circular Dichroism and Resonance Raman Spectroscopic Methods. J. Inorg. Biochem. 65, 219–226.CrossRefGoogle Scholar
  56. 56.
    Zhou, J. S. and N. M. Kostić (1993) Gating of the Photoinduced Electron Transfer from Zinc Cytochrome c and Tin Cytochrome c to Plastocyanin. Effects of the Solution Viscosity on the Rearrangement of the Metalloproteins. J. Am. Chem. Soc. 115, 1079610804.Google Scholar
  57. 57.
    Peerey, L. M. and N. M. Kostić (1989) Oxidoreduction Reactions Involving the Electrostatic and the Covalent Complex of Cytochrome c and Plastocyanin: Importance of the Rearrangement for the Intracomplex Electron-Transfer Reaction. Biochemistry 28, 1861–1868.CrossRefGoogle Scholar
  58. 58.
    Peerey, L. M., H. M. Brothers, J. T. Hazzard, G. Tollin, and N. M. Kostić (1991) Unimolecular and Bimolecular Reactions Involving Diprotein Complexes of Cytochrome c and Plastocyanin. Dependence of Electron-Transfer Reactivity on Charge and Orientation of the Docked Metalloproteins. Biochemistry 30, 9297–9304.CrossRefGoogle Scholar
  59. 59.
    Zhou, J. S. and N. M. Kostić (1992) Photoinduced electron Transfer from Zinc Cytochrome c to plastocyanin is Gated by Surface Diffusion within the Metalloprotein Complex. J. Am. Chem. Soc. 114, 3562–3563.CrossRefGoogle Scholar
  60. 60.
    Ullmann, G. M. and N. M. Kostić (1995) Electron-Tunneling Paths in Various Electrostatic Complexes between Cytochrome c and Plastocyanin. Anisotropy of the CopperLigand Interactions and Dependence of the Iron-Copper Electronic Coupling on the Metalloprotein Orientation. J. Am. Chem. Soc. 117, 4766–4774.CrossRefGoogle Scholar
  61. 61.
    Roberts, V. A., H. C. Freeman, A. J. Olson, J. A. Tainer, and E. D. Getzoff (1991) Electrostatic Orientation of the Electron-Transfer Complex Between Plastocyanin and Cytochrome c. J. Biol. Chem. 266, 13431–13441.Google Scholar
  62. 62.
    Crnogorac, M. M., C. Shen, S. Young, O. Hansson, and N. M. Kostić (1996) Effects of Mutations in Plastocyanin on the Kinetics of the Protein Rearrangement Gating the Electron-Transfer Reaction with Zinc Cytochrome c. Analysis of the Rearrangement Pathway. Biochemistry 35, 16465–16474.CrossRefGoogle Scholar
  63. 63.
    Crnogorac, M., G. M. Ullmann, and N. M. Kostić (2001) Effects of pH on Protein Association. Modification of the Proton Linkage Model and Experimental Verification of the Modified model in the Case of Cytochrome c and Plastocyanin. J. Am. Chem. Soc. 123, 10789–10798.CrossRefGoogle Scholar
  64. 64.
    Ivković-Jensen, M. M. and N. M. Kostić (1996) Effects of Temperature on the Kinetics of the Gated Electron-Transfer Reaction between Zinc Cytochrome c and Plastocyanin. Analysis of Configurational Fluctuation of the Diprotein Complex. Biochemistry 35, 15095–15106.CrossRefGoogle Scholar
  65. 65.
    Ivković-Jensen, M. M. and N. M. Kostić (1997) Effects of Viscosity and Temperature on the Kinetics of the Electron Transfer Reaction between the Triplet State of Zink Cytochrome c and Cupriplastocyanin. Biochemistry 36, 8135–8144.CrossRefGoogle Scholar
  66. 66.
    Ivković-Jensen, M. M., G. M. Ullmann, S. Young, O. Hansson, M. Crnogorac, M. Edjebäck, and N. M. Kostić (1998) Effects of Single and Double Mutations in Plastocyanin on the Rate Constant and Activation Parameters of the Gated Electron-Transfer Reaction between the Triplet State of Zinc Cytochrome c and Cupriplastocyanin. Biochemistry 37, 9557–9569.CrossRefGoogle Scholar
  67. 67.
    Ivković-Jensen, M. M., G. M. Ullmann, M. M. Crnogorac, M. Ejdebäck, S. Young, O. Hansson,, and N. M. Kostić (1999) Comparing the Rates and the Activation Parameters for the Forward Reaction between the Triplet State of Zinc Cytochrome c and Cupriplastocyanin and the Back Reaction between the Zinc Cytochrome c Cation Radical and Cuproplastocyanin. Biochemistry 38, 1589–1597.CrossRefGoogle Scholar
  68. 68.
    Ubbink, M. and D. S. Bendall (1997) Complex of Plastocyanin and Cytochrome c Characterized by NMR Chemical Shift Analysis. Biochemistry 36, 6326–6335.CrossRefGoogle Scholar
  69. 69.
    Ullmann, G. M. (2001) Charge Transfer Properties of Photosynthetic and Respiratory Proteins. pp. 525–584. In: H. S. Nalwa (Ed.): Supramolecular Photosensitive and Electroactive Matrials. Academic Press New YorkCrossRefGoogle Scholar
  70. 70.
    Ullmann, G. M. and E. W. Knapp (1999) Electrostatic Computations of Protonation and Redox Equilibria in Proteins. Eur. Biophys. J. 28, 533–551.CrossRefGoogle Scholar
  71. 71.
    Beroza, P. and D. A. Case (1998) Calculation of Proton Binding Thermodynamics in Proteins. Methods Enzymol. 295, 170–189.CrossRefGoogle Scholar
  72. 72.
    Briggs, J. M. and J. Antosiewicz (1999) Simulation of pH-dependent Properties of Proteins Using Mesoscopic Models. Rev. Comp. Chem. 13, 249–311.CrossRefGoogle Scholar
  73. 73.
    Sham, Y. Y., Z. T. Chu, and A. Warshel (1997) Consistent Calculation of pKa’s of Ionizable Residues in Proteins: Semi-mircoscopic and Mircoscopic Approaches. J. Phys. Chem. B 101, 4458–4472.CrossRefGoogle Scholar
  74. 74.
    Onufriev, A., D. A. Case, and G. M. Ullmann (2001) A Novel View on the pH Titration of Biomolecules. Biochemistry 40, 3413–3419.CrossRefGoogle Scholar
  75. 75.
    Ullmann, G. M. (2003) Relations between Protonation Constants and Titration Curves in Polyprotic Acids: A Critical View. J. Phys. Chem. B 107. in press.Google Scholar
  76. 76.
    Okamura, M., M. Paddock, M. Graige, and G. Feher (2000) Proton and electron transfer in bacterial reaction centers. Biochim. Biophys. Acta 1458, 148–163.CrossRefGoogle Scholar
  77. 77.
    Sebban, P., P. Maróti, and D. K. Hanson (2001) Electron and proton transfer to the quinones in bacterial photosynthetic reaction centers: insight from combined approaches of molecular genetics and biophysics. Biochimie 77, 677–694.CrossRefGoogle Scholar
  78. 78.
    Wraight, C. A. (1979) Electron acceptors of bacterial photosynthetic reaction centers. II. H+ binding coupled to secondary electron transfer in the quinone acceptor complex. Biochim. Biophys. Acta 548, 309–327.CrossRefGoogle Scholar
  79. 79.
    Rabenstein, B., G. M. Ullmann, and E. W. Knapp (1998) Energetics of the Electron Transfer and Protonation reactions of the Quinones in The Photosynthetic reaction center of Rhodopseudomonas viridis. Biochemistry 37, 2488–2495.CrossRefGoogle Scholar
  80. 80.
    Rabenstein, B., G. M. Ullmann, and E. W. Knapp (1998) Calculation of Protonation Patterns in Proteins with Conformational Relaxation - Application to the Photosynthetic Reaction Center. Eur. Biophys. J. 27, 628–637.CrossRefGoogle Scholar
  81. 81.
    Rabenstein, B., G. M. Ullmann, and E. W. Knapp (2000) Electron Transfer between the Quinones in the Photosynthetic Reaction Center and its Coupling to Conformational Changes. Biochemistry 39, 10487–10496.CrossRefGoogle Scholar
  82. 82.
    Maróti, P. and C. A. Wraight (1988) Flash-induced H+ Binding by Bacterial Photosynthetic Reaction Centers: Influences of the Redox States of the Acceptor Quinones and Primary Donor. Biochim. Biophys. Acta 934, 329–347.CrossRefGoogle Scholar
  83. 83.
    McPherson, P. H., M. Y. Okamura, and G. Feher (1988) Light-induced Proton Uptake by Photosynthetic Reaction Centers from Rhodobacter sphaeroides R-26. I. Protonation of the One-Electron States D+QA -, DQA-, D+QAQB and DQAQB. Biochim. Biophys. Acta 934, 348–368.CrossRefGoogle Scholar
  84. 84.
    Tandori, J., J. M. M. Valerio-Lepiniec, M. Schiffer, P. Maroti, D. Hanson, and P. Sebban (2002) Proton Uptake of Rhodobacter sphaeroides Reaction Center Mutants Modified in The Primary Quinone Environment. Photochem. Photobiol. 75. 126–133.CrossRefGoogle Scholar
  85. 85.
    Sebban, P., P. Maróti, M. Schiffer, and D. Hanson (1995) Electrostatic dominoes: long distance propagation of mutational effects in photosynthetic reaction centers of Rhodobacter capsulatus. Biochemistry 34, 8390–8397.CrossRefGoogle Scholar
  86. 86.
    Stowell, M. H. B., T. M. McPhillips, D. C. Rees, S. M. Soltis, E. Abresch, and G. Feher (1997) Light-Induced Structural Changes in Photosynthetic Reaction Center: Implications for Mechanism of Electron-Proton Transfer. Science 276, 812–816.CrossRefGoogle Scholar
  87. 87.
    Allen, J. (1994) Crystallization of the reaction center from Rhodobacter sphaeroides in a new tetragonal form. Proteins 20, 283–286.CrossRefGoogle Scholar
  88. 88.
    Lancaster, C. R. D. and H. Michel (1997) The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone. Structure 5, 1339–59.CrossRefGoogle Scholar
  89. 89.
    Taly, A., P. Sebban, J. C. Smith, and G. M. Ullmann (2003) The structural changes in the QB pocket of the photosynthetic reaction center depend on pH: a theoretical analysis of the proton uptake upon QB reduction. Biophys. J. 84. in press.Google Scholar
  90. 90.
    Jones, C. R., C. T. Sikakana, S. Hehir, M.-C. Kuo, and W. A. Gibbons (1978) The quantitation of nuclear Overhauser effect methods for total conformational analysis of peptides in solution. Application to gramicidin S. Biophys. J 24, 815.CrossRefGoogle Scholar
  91. 91.
    Hull, E., R. Karlsson, P. Main, M. M. Woolfson, and E. J. Dodson (1978) The crystal structure of a hydrated gramicidin S-urea complex. Nature 75, 206.ADSCrossRefGoogle Scholar
  92. 92.
    Mihailescu, D. and J. C. Smith (1999) Molecular dynamics simulation of the cyclic decapeptide antibiotic, gramicidin S, in dimethyl sulfoxide solution. J. Phys. Chem. 9, 1586.Google Scholar
  93. 93.
    Datema, K. P., K. P. Pauls, and M. Bloom (1986) Deuterium nuclear magnetic resonance investigation of the exchangeable sites on gramicidin A and gramicidin S in multilamellar vesicles of dipalmitoylphosphatidylcholine. Biochemistry 25. 3796.CrossRefGoogle Scholar
  94. 94.
    Zidovetzki, R., U. Banerjee, D. W. Harrigton, and S. I. Chan (1988) NMR study of the interaction of polymyxin B, gramicidin S, valinomycin with dimyristoyllecithin bilayers. Biochemistry 27, 5686.CrossRefGoogle Scholar
  95. 95.
    Prenner, E. J., R. N. A. H. Lewis, K. C. Neuman, S. M. Gruner, L. H. Kondejewski, R. S. Hodges, and R. N. McElhaney (1997) Nonlamellar phase induced by the interaction of gramicidin S with lipid bilayers. A possible relationship to membrane-disrupting activity. Biochemistry 37, 7906.CrossRefGoogle Scholar
  96. 96.
    Higashijima, T., T. Miyazawa, M. Kawai, and U. Nagai (1986) Gramicidin S analogues with D-Ala, Gly, or L-Ala residues in place of the D-Phe residue: molecular conformations and interactions with phospholipid membrane. Biopolymers 25, 2295.CrossRefGoogle Scholar
  97. 97.
    Katsu, T., H. Kobayahi, T. Hirota, Y. Fujita, K. Sato, and U. Nagai (1987) Structure-activity relationship of gramicidin S analogues on membrane permeability. Biochim. Biophys. Acta 899, 159.CrossRefGoogle Scholar
  98. 98.
    Portlock, S. H., M. J. Clague, and R. J. Cherry (1990) Leakage of internal markers from erythrocytes and lipid vesicles induced by melittin, gramicidin S and alamethicin: a comparative study. Biochim. Biophys. Acta 1030, 1.CrossRefGoogle Scholar
  99. 99.
    Bloch, K. (1985) Cholesterol, evolution ofstructure andfunction. pp. 1–24. in Biochemistry of Lipids and Membranes, Eds. J. E. Vance and D. E. Vance, Benjamin/Cummins Pub. Co. Inc., New York.Google Scholar
  100. 100.
    Smordynev, A. and M. L. Berkowitz (2001) Molecular Dynamics Simulation of the structure of DMPC bilayers with Cholesterol, Ergosterol, and Lanosterol. Biophys. J. 80, 1649.CrossRefGoogle Scholar
  101. 101.
    Pasenkiewicz-Gierula, M., T. Rog, K. Kitamura, and A. Kusumi (2000) Cholesterol Effects on the Phosphatidylcholine Bilayer polar region: A Molecular Dynamics study. Biophys. J. 78, 1376.CrossRefGoogle Scholar
  102. 102.
    Chiu, S. W., E. Jacobsson, and H. L. Scott (2001) Combined Monte Carlo and Molecular Dynamics simulation of hydrated lipid-cholesterol lipid bilayers at low Cholesterol concentration. Biophys. J. 80, 1104.CrossRefGoogle Scholar
  103. 103.
    Tu, K., M. Klein, and D. Tobias (1998) Constant-Pressure Molecular Dynamics investigation of cholesterol effects in a Dipalmitoylphosphatidylcholin bilayer. Biophys. J. 75, 2147.CrossRefGoogle Scholar
  104. 104.
    Gliss, C., O. Ranedl, H. Casalta, E. Sackmann, R. Zorn, and T. Bayerl (2001) Anisotropic motion of cholesterol in oriented DPPC bilayers studies by quasielastic neutron scattering: the liquid-ordered phase. Biophys. J. 77, 331.CrossRefGoogle Scholar
  105. 105.
    Endress, E., H. Heller, H. Casalta, M. F. Brown, and T. M. Bayerl (2002) Anisotropic motion and molecular dynamics of cholesterol, lanosterol and ergosterol in lecithin bilayers studied by quasi-elastic neutron scattering. Biochemistry 41. 13078.CrossRefGoogle Scholar
  106. 106.
    Cournia, Z., A. Vaiana, J. C. Smith, and G. M. Ullmann (2003) submitted. Pure Appl. Chem. Google Scholar
  107. 107.
    Brooks, B. R., R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus (1983) CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculation. J. Comp. Chem. 4, 187–217.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Jeremy C. Smith
    • 1
  • Zoe Cournia
    • 1
  • Antoine Taly
    • 1
  • Alexander L. Tournier
    • 1
  • Dan Mihailescu
    • 1
  • G. Matthias Ullmann
    • 1
  1. 1.Computational Molecular Biophysics, Interdisciplinary Center for ScientiFic Computing (IWR), Im Neuenheimer Feld 368Universität HeidelbergHeidelbergGermany

Personalised recommendations