Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 133))

  • 307 Accesses

Abstract

We review recent theoretical and experimental developments in the field of complex polymers that carry a chemical and topological disorder. The polymer classes discussed include chemically disordered crosslinked heteropolymers and liquid crystalline heteropolymers. Field theory and spin glass averaging methods are very useful to study complex disordered polymers. The field theory allows explicit account of chain conformation contributions to thermodynamical quantities and a faithful representation of experimentally observable order parameters. Spin glass averaging methods presented here are instrumental for averaging over chemical and topological disorders. The review centers on theory development, predictions for conformational and orientational ordering, phase diagram analysis and also comparison with experimental results when possible.

Random heteropolymers (RHPs) with physical crosslinks are shown to exhibit three globular phases: frozenglobular with micro-domain structure, random-globular and frozen-randomglobular. For RHPs with chemical crosslinks our theory predicts three frozen-globular phases, and one random-globular phase; the intra-frozen transitions are conformational transitions which do not require any re-entrant passages via the random-globular phase. The phase diagram of crosslinked RHPs is systematically explored in parameter and thermodynamic variable space, and physical explanations for the conformational organization and the order of the phase transitions is provided.

The second class of disordered polymers we review are manychain mesogen/flexible disordered copolymers (DLCP). A field theory and creation-annihilation summation rules are proposed to carry out coupled orientational and conformational averages of polymer chain conformations in these complex systems. Predictions for the effect of flexibility, stiffness and inter-segment alignment on orientational ordering, the nematic/isotropic density threshold and the segmental orientational ordering at the nematic/isotropic transition is discussed in close proximity to experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. R. C. Boyde, J. Chromatogr., 124, 219, (1976)

    Article  Google Scholar 

  2. R. W. Veatch, J. Pet. Technol, 677, April (1983)

    Google Scholar 

  3. R. A. Siegel, M. Galamarzian, B. A. Firestone, and B. C. Moxley, J. Control Release, 8, 179, (1988)

    Article  Google Scholar 

  4. Biopolymer Gels, A. L. Clark, Curr. Opin.in Coll. and Int. Sci., 6, 712, (1996)

    Google Scholar 

  5. Textbook of Polymer Science, John Wiley and Sons, F. W. Billmeyer, (1971)

    Google Scholar 

  6. T. Tanaka, C. Wang, V. Pande and A. Yu. Grosberg, Faraday Discus., 102, 201, (1996)

    Google Scholar 

  7. A. Keller, Faraday Discuss., 101, 1, (1995)

    Article  ADS  Google Scholar 

  8. S. Panyukov and I. Rabin, Phys. Rep., 269, 1, (1996)

    Article  ADS  Google Scholar 

  9. P. M. Goldbardt, H.E. Castillo and A. Zippelius, Adv. Phys., 45, 393, (1996)

    Article  ADS  Google Scholar 

  10. L. Gutman and E. I. Shakhnovich, J. Chem. Pins., 107. 1247, (1997)

    Article  ADS  Google Scholar 

  11. L. Gutman and E. I Shakhnovich, J. Chem. Phys., 109, 2947, (1998)

    Article  ADS  Google Scholar 

  12. M. Annaka and T. Tanaka, Nature, 355, 430, (1992)

    Article  ADS  Google Scholar 

  13. P. G. deGennes, J. Phys. Lett., 69, 40, (1979)

    Google Scholar 

  14. R. M. Briber and B. J. Bauer, Macromolecules, 21, 3296, (1988)

    Article  ADS  Google Scholar 

  15. L. Chikina, M. Daoud, J. Polym. Sci. B, 36, 1507, (1998)

    Article  Google Scholar 

  16. M. Annaka, T. Tanaka, Phys. A, 40, (1994)

    Google Scholar 

  17. T. Shiomi, H. Ishimatsu, T. Eguchi and K. Imai, Macromol., 23, 4970, (1990)

    Article  ADS  Google Scholar 

  18. E. I. Shakhnovich and A. M. Gutin, J. Phys. (Fr), 50, 1843, (1989)

    Article  Google Scholar 

  19. V. S. Pande, A. Y. Grosberg, and T. Tanaka, J. Phys. II France, 4, 1771, (1994)

    Article  Google Scholar 

  20. F. Rindfleisch, T. P. DiNoia, and M. A McHugh, J. Phys. Chem. 100, 15581, (1996)

    Article  Google Scholar 

  21. R. C. Sutton, L. Thai, J. M. Hewitt, C. L. Voycheck, and J. S. Tan, Macromol., 21, 2432, (1988)

    Article  ADS  Google Scholar 

  22. D. Bratko, A. K. Chakraborty, E.I. Shakhnovich, J. Chem. Phys., 106, 1264, (1997)

    Article  ADS  Google Scholar 

  23. G. H. Fredrickson and S. T. Milner, Phys.Rev.Lett., 67, 835, (1991)

    Article  ADS  Google Scholar 

  24. A. M. Gutin and E. I. Shakhnovich, J. Chem. Phys. 100, 5290, (1994)

    Article  ADS  Google Scholar 

  25. L. Gutman and E.I. Shakhnovich, J. Chem. Phys., in preparation

    Google Scholar 

  26. L. Gutman and E.I. Shakhnovich, M. Shibayama, M. Annaka Phys. Rev. Lett., in preparation

    Google Scholar 

  27. F. Simoni Liq. Cryst., 24, 83, (1998)

    Article  Google Scholar 

  28. T. E. Creighton, BioEssays, 8, 57, (1988)

    Google Scholar 

  29. L. Gutman and E. I. Shakhnovich, J. Chem. Phys., 107, 1247, (1997)

    Article  ADS  Google Scholar 

  30. L. Gutman and E. I. Shakhnovich, J. Chem. Phys., 109, 2947. (1998)

    Article  ADS  Google Scholar 

  31. P. M. Goldbardt, H.E. Castillo and A. Zippelius, Adv. Chem. Phys., 45, 393, (1996)

    Article  Google Scholar 

  32. A. M. Gutin and E. I. Shakhnovich, J. Chem. Phvs. 100. 5290. (1994)

    Article  ADS  Google Scholar 

  33. E. I. Shakhnovich and A. M. Gutin, Biophys. Chem., 34, 187, (1989)

    Article  Google Scholar 

  34. Gi. Parisi, J. Phys. A: Math. Gen., 13, 1887, (1990);

    Article  ADS  Google Scholar 

  35. M. Mezard and G. Parisi, J. Phys. I, 1, 809, (1991)

    Article  Google Scholar 

  36. P. J. Flory, Proc. Roy. Soc. 234, 73, (1956)

    Article  ADS  Google Scholar 

  37. L. Onsager Ann. N. Y. Acad. Sci., 51a, 627, (1949)

    Article  ADS  Google Scholar 

  38. W. Maier and A. Z. Saupe Naturoforsch, 12, 882, (1959)

    ADS  Google Scholar 

  39. A. Yu Grosberg and A. R. Khokhlov Soc. Sci. Rev. A. Phys., 8. 147. (1987)

    Google Scholar 

  40. P. J. Flory and G. Ronca Mol. Crys. Liq. Cryst., 54, 289, (1979)

    Article  Google Scholar 

  41. B. Y. Ha and D. Thirumalai J. Chem. Phys., 106, 4243. (1997)

    Article  ADS  Google Scholar 

  42. B. Jung and B. L. Schurman Macromol., 22, 477, (1989)

    Article  ADS  Google Scholar 

  43. R. D. Kamier and G. S. Grest Phys. Rev. E, 55, 1197. (1997)

    Article  ADS  Google Scholar 

  44. M. Dijkstra and D. Frenkel Phys. Rev. E, 51, 5891. (1995)

    Article  ADS  Google Scholar 

  45. Z. Y. Chen Macromol., 26, 3419, (1993)

    Article  ADS  Google Scholar 

  46. A. R. Khokhlov and A. N. Semenov Physica Amsterdam, 112A, 605, (1985)

    ADS  Google Scholar 

  47. R. Podgornick Phys. Rev. E., 54, 5268, (1996);

    Article  ADS  Google Scholar 

  48. R. Podgornick ibid Phys. Rev. E., 52, 5170, (1995)

    Article  ADS  Google Scholar 

  49. R. K. Baharadwaj and R. H. Boyd Macromol., 31, 7682. (1998)

    Article  ADS  Google Scholar 

  50. G. D. Butzbach, J. H. Wendorff and H. J. Zimmermann MaKromol. Chem. Rapid Commun., 6, 821, (1985)

    Article  Google Scholar 

  51. G. C. Rutledge Macromol., 25, 3984, (1992)

    Article  ADS  Google Scholar 

  52. V. Percec and Y. Tsuda Macromol., 55, 1197, (1997)

    Google Scholar 

  53. A. Blumstein and T. Oomanan Macromol., 15, 1264, (1982)

    Article  ADS  Google Scholar 

  54. J. S. Moore and S. I. Stupp Macromol., 20, 273, (1987)

    Article  ADS  Google Scholar 

  55. P. G. Martin and S. I. Stupp Macromol, 21, 1222, (1988);

    Article  ADS  Google Scholar 

  56. P. G. Martin and S. I. Stupp Macromol, 21, 1288, (1988)

    Article  Google Scholar 

  57. G. H. Fredrickson and L. Leibler Macromol., 23, 531. (1990)

    Article  ADS  Google Scholar 

  58. S. I. Stupp, S pp, J. S. Moore, and P. G. Martin Macromol., 21, 1228, (1988)

    Article  ADS  Google Scholar 

  59. L. Gutman and A. K. Chakraborty J. Chem. Phys., 101, 10074, (1994);

    Article  ADS  Google Scholar 

  60. L. Gutman and A. K. Chakraborty J. Chem. Phys., 103, 10733, (1995)

    Article  ADS  Google Scholar 

  61. A. M. Gupta and S. F. Edwards J. Chem. Phys., 98, 1588, (1993)

    Article  ADS  Google Scholar 

  62. K. F. Freed Adv. Chem. Phys., 22, 1, (1972)

    Article  Google Scholar 

  63. K. Binder and A. P. Young Rev. Mod. Phys., 58, 801, (1986)

    Article  ADS  Google Scholar 

  64. M. Swanson Path Integrals and Quantum Processes, Academic Press, INC, Harcourt Brace Jovanovich, Publishers (1992)

    Google Scholar 

  65. B. Carnahan, H A. Luther and J.O. Wilkes Applied Numerical Methods (Wiley New York), (1969)

    Google Scholar 

  66. V. Percec and Y. Tsuda Macromol, 23, 3509, (1990)

    Article  ADS  Google Scholar 

  67. A. Blumstein R. B. Blumstein, M. M. Gauthier, O. Thomas and J. Asrar Mil. Cryst., Liq. Cryst. (LeTT.), 92, (1983), 87

    Article  Google Scholar 

  68. J. E. Mark Physical Properties of Polymers Handbook AIP Press, Woodbury NY, (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gutman, L., Shakhnovich, E. (2004). Phase Transformations and Orientational Ordering in Chemically Disordered Polymers — a Modern Primer. In: Samios, J., Durov, V.A. (eds) Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations. NATO Science Series, vol 133. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2384-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2384-2_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1847-3

  • Online ISBN: 978-1-4020-2384-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics