Computer Simulation of Mesogens with AB Initio Interaction Potentials

An application to oligophenyls
  • I. Cacelli
  • G. Cinacchi
  • G. Prampolini
  • A. Tani
Part of the NATO Science Series book series (NAII, volume 133)


Computer simulation methods such as Monte Carlo (MC) and molecular dynamics (MD) have proven to be a powerful tool to study liquid crystals, despite the computational problems due to the wide range of length and time scales that characterizes their dynamics. The latter feature, combined with the complex nature of typical liquid crystal forming molecules, has suggested to adopt rather simplified descriptions of the intermolecular interactions. After the Lebwohl-Lasher lattice model [1], where even translational freedom was missing, anisotropic interaction models have been considered, either with hard [2] or continuous potential functions, the most widely employed being the Gay-Berne model [3, 4, 5]. In all these cases, molecules are considered singlesite interaction centers and no molecular flexibility is taken into account. Despite their simplicity, these models have proven valuable to study both the general structure-property relationships and the basic features responsible of the liquid crystal behavior. However, their simplicity becomes a drawback when the interest focuses on a specific liquid crystal, with a well defined molecular composition.


Liquid Crystal Monte Carlo Phenyl Ring Orientational Order Parameter Torsional Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.A. Lebwohl and G. Lasher (1972) Nematic-Liquid-Crystal Order — A Monte Carlo Calculation, Phys. Rev. A,Vol. 6, No. 1,pp. 426–429ADSCrossRefGoogle Scholar
  2. 2.
    M.P. Allen, G.T. Evans, D. Frenkel and B.M. Mulder (1993) Hard Convex Body Fluids, Adv. Chem. Phys., Vol. 86. oP. 1–166CrossRefGoogle Scholar
  3. 3.
    J.G. Gay and B.J. Berne (1981) Modification of the overlap potential to mimic a linear site-site potential, J. Chem. Phys.,Vol. 74, No. 6, pp. 3316–3319ADSCrossRefGoogle Scholar
  4. 4.
    M.A. Bates and G.R. Luckhurst (1999) Computer simulation of Liquid Crystal phases formed by Gay-Berne mesogens, Struct. Bonding (Berlin), Vol. 94, pp. 65–138CrossRefGoogle Scholar
  5. 5.
    C. Zannoni (2001) Molecular design and computer simulations of novel mesophases, J. Mater. Chem., Vol. 11, pp. 2637–2646CrossRefGoogle Scholar
  6. 6.
    S.J. Picken, W.F. Van Gusteren, P.T. Van Dujen and W.H. De Jeu (1989) A molecular dynamics study of nematic phase of 4-n-pentyl-4’-cyanobiphenyl, Liq. Cryst., Vol. 6, pp. 357–371CrossRefGoogle Scholar
  7. 7.
    M.R. Wilson and M.P. Allen (1992) Structure of trans-4-(trans-4-n-pentylcyclohexyl)cyclohexylcarbonitrile (CCH5) in the isotropic and nematic phases: a computer simulation study, Liq. Cryst., Vol. 12, pp.157–176CrossRefGoogle Scholar
  8. 8.
    A.V. Komolkin, A. Laaksonen and A. Maliniak (1994) Molecular dynamics simulation of a nematic liquid crystal, J. Chem. Phys.,Vol. 101, No. 5, pp. 4103–4116ADSCrossRefGoogle Scholar
  9. 9.
    S. Hauptmann, T. Mosell, S. Reiling and J. Brickmann (1996) Molecular dynamics simulations of the bulk phases of 4-cyano-4-n-pentyloxybiphenyl, Chem. Phys.,Vol. 208, pp. 57–71CrossRefGoogle Scholar
  10. 10.
    C. McBride, M.R. Wilson and J.A.K. Howard (1998) Molecular dynamics simulations of liquid crystal phases using atomistic potentials, Mol. Phys., Vol. 93, No. 6, pp. 955–964ADSCrossRefGoogle Scholar
  11. 11.
    Glaser, M.A. (2000) Atomistic simulation and modeling of smectic liquid crystals in Advances in the computer simulations of liquid crystals,P. Pasini and C. Zannoni (eds) Kluwer, Dordrecht, pp. 263–331.CrossRefGoogle Scholar
  12. 12.
    R. Car and M. Parrinello (1985) Unified approach for Molecular Dynamics and DensityFunctional theory, Phys. Rev. Lett., Vol. 55, No. 22, pp. 2471–2474ADSCrossRefGoogle Scholar
  13. 13.
    C. Amovilli, I. Cacelli, S. Campanile and G. Prampolini (2002) Calculation of the intermolecular energy of large molecules by a fragmentation scheme: Application to the 4-npentyl-4’-cyanobiphenyl (5CB) dimer, J. Chem. Phys.,Vol. 117, No. 7, pp. 3003–3012ADSCrossRefGoogle Scholar
  14. 14.
    S. Y. Yakovenko, A. A. Murayski, F. Eikelschulte and A. Geiger (1998) Temperature dependence of the properties of simulated PCH5,Liq. Cryst., Vol. 24, pp. 657–671.Google Scholar
  15. 15.
    P. Hobza, H.L. Sezle and E.W. Shlag (1996) Potential energy surface for the benzene dimer. Results of ab initio CCSD(T) calculations show two nearly isoenergetic structures: T-shaped and Parallel-Displaced, J. Phys. Chem.,Vol. 100, pp. 18790–18794CrossRefGoogle Scholar
  16. 16.
    S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami and K. Tanabe (2002) Origin of attraction and directionality of the nJit interaction: model chemistry calculations of benzene dimer interaction, J. Am. Chem. Soc.,Vol. 124, No. 1, pp. 104–112CrossRefGoogle Scholar
  17. 17.
    Gaussian 98 (Revision A.1), M.J. Frisch et al. (1998), Gaussian, Inc., Pittsburgh, PAGoogle Scholar
  18. 18.
    I. Cacelli, G. Cinacchi, C. Geloni, G. Prampolini and A. Tani (2002) Computer simulations ofp-phenyls with interaction potentials from ab initio calculations, Mol. Cryst. Liq. Cryst., in pressGoogle Scholar
  19. 19.
    D.J. Cleaver, C.M. Care, M.P. Allen and M.P. Neal (1996) Extension and generalization of the Gay-Berne potential, Phys. Rev. E,Vol. 54, No. l,pp. 559–567ADSCrossRefGoogle Scholar
  20. 20.
    A.D. Buckingam (1978) Permanent and induced molecular moments and long-range interaction forces, Adv. Chem. Phys., Vol. 12, pp. 107–142CrossRefGoogle Scholar
  21. 21.
    S. Tsuzuki and K. Tanabe (1991) ab initio molecular orbital calculations of the internal rotational potential of biphenyl using polarized basis sets with electron correlation correction, J. Phys. Chem.,Vol. 95, pp. 139–144CrossRefGoogle Scholar
  22. 22.
    N. Metropolis, A. W. Rosenbluth, M. H. Rosenbluth, A. H. Teller and E. Teller (1953) Equation of state calculations by fast computing machines, J. Chem. Phys., Vol. 21, No. 6, pp. 1087–1093ADSCrossRefGoogle Scholar
  23. 23.
    W.W. Wood (1968) Physics of Simple Liquids, edited by H. N. V. Temperley, J. S. Rowlinson and G. S. Rushbrooke, North-HollandGoogle Scholar
  24. 24.
    H. F. King (1972) Isobaric versus Canonical Ensemble formulation for Monte Carlo studies of liquids, J. Chem. Phys., Vol. 57, No. 5, pp. 1837–1841ADSCrossRefGoogle Scholar
  25. 25.
    M. A. Miller, L. M. Amon, W. P. Reinhardt (2000) Should one adjust the maximum step size in a Metropolis Monte Carlo simulation?, Chem. Phys. LeIT., Vol. 331, pp. 278–284ADSCrossRefGoogle Scholar
  26. 26.
    J. Veillard-Baron (1974) The equation of state of a system of hard spherocylinders, Mol. Phys. Vol. 28, No. 3, PP. 809–818ADSCrossRefGoogle Scholar
  27. 27.
    A. Baranyai and T.R. Welberry (1991) Molecular dynamics of solid biphenyl, Mol. Phys., Vol. 73, No. 6, pp. 1317–1334ADSCrossRefGoogle Scholar
  28. 28.
    W.L. Jorgensen and D.L. Severance (1990) Aromatic-aromatic interactions: free energy profiles for the benzene dimer in water,chloroform and liquid benzene, J. Am. Chem. Soc.,Vol. 112, pp. 4768–4774CrossRefGoogle Scholar
  29. 29.
    P. A. Irvine, C. Wu, P.J. Flory (1984) Liquid-crystalline Transitions in Homologous pPhenylenes and their Mixtures, J. Chem. Soc., Faraday Trans. I Vol. 80, pp. 1795–1806CrossRefGoogle Scholar
  30. 30.
    T.J. Dingemans, N.S. Murthy, E.T. Samulski (2001) Javelin, hockey stick and boomerangshaped liquid crystals. Structural variations on p-quinquephenyl, J. Phys. Chem B Vol. 105, pp. 8845–8860CrossRefGoogle Scholar
  31. 31.
    R. Hashim, G. R. Luckhurst, S. Romano (1995) Computer simulation studies of anisotropic systems XXIV: Constant pressure investigations of the Smectic B phase of the Gay-Berne mesogen, J. Chem. Soc. Faraday Trans. Vol. 91 No. 14, pp. 2141–2148CrossRefGoogle Scholar
  32. 32.
    M. A. Bates, G. R. Luckhurst (1999) Computer simulation studies of anisotropic systems XXX: The phase behavior and structure of a Gay-Berne mesogen, J. Chem. Phys. Vol. 110 No. 14, pp. 7087–7108ADSCrossRefGoogle Scholar
  33. 33.
    G. R. Luckhurst, P. S. J. Simmonds (1993) Computer simulation studies of anisotropic systems XXI: Parameterization of the Gay-Berne potential for model mesogens, Mol. Phys. Vol. 80 No. 2, pp. 230–252ADSCrossRefGoogle Scholar
  34. 34.
    E. De Miguel, E. Martin Del Rio, J. T. Brown, M. P. Allen (1996) Effect of the attractive interactions on the phase behavior of the GayBerne liquid crystal model, J. Chem. Phys. Vol. 105 No. 10, pp. 4234–4249ADSCrossRefGoogle Scholar
  35. 35.
    J. T. Brown, M. P. Allen, E. Martin Del Rio, E. De Miguel (1998) Effects of elongation on the phase behavior of the Gay-Berne fluid, Phys. Rev. E Vol. 57No. 6, pp. 6685- 6699ADSCrossRefGoogle Scholar
  36. 36.
    E. De Miguel, C. Vega (2002) The global phase diagram of the Gay-Berne model, J. Chem. Phys. Vol. 117No. 13, pp. 6313–6322ADSCrossRefGoogle Scholar
  37. 37.
    M. A. Bates, G. R. Luckhurst (1996) Computer simulation studies of anisotropic systems XXVI: Monte Carlo investigations of a Gay-Berne discotic at constant pressure, J Chem. Phys. Vol. 104 No. 15, pp. 6696–6710ADSCrossRefGoogle Scholar
  38. 38.
    G.W. Smith, (1979) Phase behavior of some linear polyphenyls, Mol. Cryst. Liq. Cryst. Vol. 49, pp. 207–209CrossRefGoogle Scholar
  39. 39.
    A. Göller, U.W. Grummt, (2000) Torsional barriers in biphenyl, 2,2’-bipyridine and 2phenylpyridine, Chem. Phys. Lett., Vol. 321, pp. 399–405CrossRefGoogle Scholar
  40. 40.
    S. Tsuzuki, T. Uchimaru, K. Matsumura, M. Mikami, K. Tanabe (1999) Torsional potential of biphenyl:Ab initio calculations with the Dunning correlation consisted basis sets, J Chem. Phys. Vol. 110 No. 6, pp. 2858–2861ADSCrossRefGoogle Scholar
  41. 41.
    I. Cacelli, G. Prampolini, work in progress Google Scholar
  42. 42.
    I. Cacelli, G. Cinacchi, G. Prampolini and A. Tani, work in progress Google Scholar
  43. 43.
    L. X. Dang (2000) Molecular dynamics study of benzene-benzene and benzene-potassium ion interactions using polarizable potential models, J Chem. Phys Vol. 113 No. 1, pp. 266273CrossRefGoogle Scholar
  44. 44.
    W.F. Van Gunsteren, A.E. Mark, (1998) Validation of molecular dynamics simulation, J Chem. Phys., Vol. 108, pp. 6109–6116ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • I. Cacelli
    • 1
  • G. Cinacchi
    • 1
  • G. Prampolini
    • 1
  • A. Tani
    • 1
  1. 1.Dipartimento di Chimica e Chimica IndustrialePisaItaly

Personalised recommendations