Advertisement

Molecular Simulations of Nafion Membranes in the Presence of Polar Solvents

  • D. A. Mologin
  • P. G. Khalatur
  • A. R. Khokhlov
Chapter
  • 202 Downloads
Part of the NATO Science Series book series (NAII, volume 133)

Abstract

We describe molecular dynamics computer simulations coupled with quantum chemical calculations of relevant geometries and interaction constants for studying the detailed behavior of solvent-containing Nafion® membranes. Our attention here is focused on the effect of different solvent additives on the equilibrium structure of micellar aggregates. Taking into account the practical importance of methanol membrane fuel cells, methanol-containing systems are the subject of our primary interest. Also, we study mixed aggregates containing alcohols H(CH2)NOH with longer hydrocarbon chain, up to n = 7. In the case of the bicomponent solvent-containing aggregates we have suggested how events occurring at the molecular level produce polymorphic transitions in these mixed aggregates from spherical structures toward cylindrical and rather exotic toroidal micelle structures, stabilized by a more uniform compact packing of the hydrophobic groups in the micelle exterior. These transitions predicted in the present study illustrate how intermolecular forces such as solvation as well as solvent chain length can affect overall aggregate structure and result in polymorphism.

Keywords

Solvent Molecule Hydrophobic Group Methanol Molecule Solvent Content Gyration Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yeager, H.L. and Eisenberg, A. (1982) Introduction, in A. Eisenberg and H.L. Yeager (eds.), Perfluorinated Ionomer Membranes., ACS Symp. Series 180; Amer. Chem. Soc., Waschington, DC.Google Scholar
  2. 2.
    Tant, M.R., Mauritz, K.A., and Wilkes, G.L. (1997) Ionomers: Synthesis, Structure, Properties and Applications, Blackie Academic and Professional, London, 514 pp.Google Scholar
  3. 3.
    Polymer Electrolyte Fuel Cells (1995) Electrochim. Acta 40, 283.Google Scholar
  4. 4.
    Ionomers: Characterization, Theory and Applications (1996) S. Schlick (ed.), CRC Press, Boca Raton, FL.Google Scholar
  5. 5.
    Norby T. (1999) Solid-state protonic conductors: Principles, properties, progress and prospects, Solid State Ionics 125, 1–11.CrossRefGoogle Scholar
  6. 6.
    Gebel, G. and Moore, R.B. (2000) Small angle scattering study of short pendant chain perfluorosulfonated ionomer membranes, Macromolecules 33, 4850–4859.ADSCrossRefGoogle Scholar
  7. 7.
    Semenov, A.N., Nyrkova, I.A., and Khokhlov, A.R., (1996) Statistics and dynamics of ionomer systems, in S. Schlick (ed.), Ionomers: Characterization, Theory and Applications, CRC Press, Boca Raton, FL, Chapter 11. PD. 251–272.Google Scholar
  8. 8.
    Khalatur, P.G., Khokhlov, A.R., Mologin, D.A., and Zheligovskaya, E.A. (1998) Computer simulation studies of aggregates of associating polymers: Influence of low-molecular-weight additives solubilizing the aggregates, Macromol. Theory Simul. 7, 299–323.CrossRefGoogle Scholar
  9. 9.
    Helfand, E. and Wasserman, Z.R. (1982) Microdomain structure and the interface in block copolymers, in I. Goodman (ed.), Developments in Block Copolymers, Applied Science, London, vol. 1.Google Scholar
  10. 10.
    Fredrickson, G.H. and Bates, F.S. (1997) Design of bicontinuous polymeric microemulsions, J. Polymer Sci. B, 35, 2775–2781.CrossRefGoogle Scholar
  11. 11.
    Fredrickson, G.H. and Bates, F.S. (1996) Dynamics of block copolymers: Theory and experiment, Annu. Rev. Mater. Sci. 26, 501–550.ADSCrossRefGoogle Scholar
  12. 12.
    Nyrkova, I.A., Khokhlov, A.R., and Doi, M. (1993) Microdomains in blockcopolymers and multiplets in ionomers: Parallels in behavior, Macromolecules 26, 3601–3611.ADSCrossRefGoogle Scholar
  13. 13.
    Khokhlov, A.R. and Philippova, O.E. (1996) Self-assemblies in ion-containing polymers, in S. Webber (ed.), Solvents and Polymer Self-Organization, Kluwer, New York, pp. 5–45.Google Scholar
  14. 14.
    Aldebert, P., Dreyfus, B., and Pineri, M. (1986) Small-angle neutron scattering of perfluorosulfonated ionomers in solution, Macromolecules 19.2651–2653.ADSCrossRefGoogle Scholar
  15. 15.
    Aldebert, P., Dreyfus, B., Gebel, G., Nakamura, N., Pineri, M., and Volino, F. (1988) Rod-like micellar structures in perfluorinated ionomer solutions, J. Phys. (Paris) 49, 2101–2109.CrossRefGoogle Scholar
  16. 16.
    Rebrov, A.V., Ozerin, A.N., Svergun, D.I., Bobrova, D.L., and Bakeyev, N.F. (1990) Study of aggregation of macromolecules of perfluorosulfinated ionomer in solution by the small-angle X-ray-scattering method, Polym. Sci. U.S.S.R. 32, 15931599.CrossRefGoogle Scholar
  17. 17.
    Hilger, C., Drager, M., and Stadler, R. (1992) Molecular origin of supramolecular self-assembling in statistical copolymers — Cooperative structure formation by combination of covalent and association chain polymers, Macromolecules 25, 24982505.Google Scholar
  18. 18.
    Hilger, C. and Stadler, R. (1992) Cooperative structure formation by directed noncovalent interactions in an unpolar polymer matrix: Differential scanning calorimetry and small-angle X-ray scattering. Macromolecules 25. 6670–6677ADSCrossRefGoogle Scholar
  19. 19.
    Lu, X., Steckle, W.P., and Weiss, R.A. (1993) Morphological studies of a triblock copolymer ionomer by small angle X-ray scattering, Macromolecules 26, 65256530.Google Scholar
  20. 20.
    Kim, J.-S., Jackman, J., and Eisenberg, A. (1994) Filler and percolation behaviour of ionic aggregates in styrene-sodium methacrylate ionomers, Macromolecules 27, 2789–2803.ADSCrossRefGoogle Scholar
  21. 21.
    Loppinet, B., Gebel, G., and Williams, C.E. (1997) Small-angle scattering study of perfluorosulfonated ionomer solutions, J. Phys. Chem. B 101, 1884–1892.CrossRefGoogle Scholar
  22. 22.
    Loppinet, B. and Gebel, G. (1998) Rodlike colloidal structure of short pendant chain perfluorinated ionomer solutions, LanGGmuir 14. 1977–1983.CrossRefGoogle Scholar
  23. 23.
    Khalatur, P.G., Talitskikh, S.K., and Khokhlov, A.R. (2002) Structural organization of water-containing Nafion: The integral equation theory, Macromol. Theory Simul. 11, 566–586.CrossRefGoogle Scholar
  24. 24.
    Mologin, D.A., Khalatur, P.G., and Khokhlov, A.R. (2002) Structural organization of water-containing Nafion: A cellular-automaton-based simulation, Macromol. Theory Simul. 11, 587–607.CrossRefGoogle Scholar
  25. 25.
    (a) Breneman, C.M. and Wiberg, K.B. (1990) Determining atom-centered monopoles from molecular electrostatic potentials — The need for high sampling density in formamide conformational-analysis, J. Comput. Chem. 11, 361–373;CrossRefGoogle Scholar
  26. 25.
    (b) Wiberg, K.B., Hadad, C.M., Breneman, C.M., Laidig, K.E., Murcko, M.A., and LePage, T.J. (1991) How do electrons respond to structural changes? Science 252, 1266–1272.Google Scholar
  27. 26.
    Elliot, J.A., Hanna, S., Elliot, A.M.S., and Cooley, G.E. (1999) Atomistic simulation and molecular dynamics of model systems for perfluorinated ionomer membranes, Phys. Chem. Chem. Phys. 1, 4855–4863.CrossRefGoogle Scholar
  28. 27.
    Khalatur, P.G., Khokhlov, A.R., Nyrkova, I.A., and Semenov, A.N. (1996) Aggregation processes in self-associating polymer systems: Computer simulation study of micelles in the superstrong segregation regime, Macromol. Theory Simul. 5, 713748.Google Scholar
  29. 28.
    Khalatur, P.G., Papulov, Yu.G., and Pavlov, A.S. (1986) The influence of solvent on the static properties of polymer-chains in solution — A molecular-dynamics simulation, Molec. Phys. 58, 887–895.ADSCrossRefGoogle Scholar
  30. 29.
    Allen, M.P. and Tildesley, D.J. (1987) Computer Simulation of Liquids, Claredon Press, Oxford.zbMATHGoogle Scholar
  31. 30.
    Evans, D.J and Morriss, G.P. (1990) Statistical Mechanics of Nonequilibrium Liquids, Academic Press, London.zbMATHGoogle Scholar
  32. 31.
    Connolly, M.L. (1983) Solvent-accessible surfaces of proteins and nucleic acids, Science 221, 709–713.ADSCrossRefGoogle Scholar
  33. 32.
    Semenov, A.N., Nyrkova, I.A., and Khokhlov, A.R. (1995) Polymers with strongly interacting groups: Theory for non-spherical multiplets, Macromolecules 28, 74917499.Google Scholar
  34. 33.
    Khalatur, P.G., Khokhlov, A.R., Nyrkova, I.A., and Semenov, A.N. (1996) Aggregation processes in self-associating polymer systems: A comparative analysis of theoretical and computer simulation data for micelles in the superstrong segregation regime, Macromol. Theory Simul. 5, 749–756.CrossRefGoogle Scholar
  35. 34.
    Marx, C.L., Caulfield, D.F., and Cooper, S.L. (1973) Morphology of ionomers, Macromolecules 6, 344–353.ADSCrossRefGoogle Scholar
  36. 35.
    Yarusso, D.J. and Cooper, S.L. (1983) The microstructure of ionomers: Interpretation of small-angle X-ray scattering data, Macromolecules 16, 1871–1879.ADSCrossRefGoogle Scholar
  37. 36.
    Ding, Y.S., Hubbard, S.R., Hodgson K.O., Register, R.A., and Cooper, S.L. (1988) Anomalous small-angle X-ray scattering from a sulfonated polystyrene ionomer, Macromolecules 21, 1698–1703.ADSCrossRefGoogle Scholar
  38. 37.
    Ishioka, T. and Kobayashi, M. (1990) Small-angle X-ray-scattering study for structural changes of the ion cluster in a zinc salt of an ethylene methacrylic-acid ionomer on water-absorption macromolecules, Macromolecules 23, 3183–3186.ADSCrossRefGoogle Scholar
  39. 38.
    Kutsumizu, S., Nagao, N., Tadano, K., Tachino, H., Hirasawa, E., and Yano, S. (1992) Effects of water sorption on the structure and properties of ethylene ionomers, Macromolecules 25, 6829–6835.ADSCrossRefGoogle Scholar
  40. 39.
    Chu, B., Wang, J., Li, Y., and Peiffer, D.G. (1992) Ultra-small-angle X-rayscattering of a zinc sulfonated polystyrene, Macromolecules 25, 4229–4231.ADSCrossRefGoogle Scholar
  41. 40.
    Gebel, G. and Lambard, J. (1997) Small-angle scattering study of water-swollen perfluorinated ionomer membranes, Macromolecules 30, 7914–7920.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • D. A. Mologin
    • 1
  • P. G. Khalatur
    • 2
  • A. R. Khokhlov
    • 3
  1. 1.Department of Physical ChemistryTver State UniversityTverRussia
  2. 2.Department of Polymer ScienceUniversity of UlmUlmGermany
  3. 3.Physics DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations