Skip to main content

Computational Methods for Analyzing the Intermolecular Resonant Vibrational Interactions in Liquids and the Noncoincidence Effect of Vibrational Spectra

  • Chapter
Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations

Part of the book series: NATO Science Series ((NAII,volume 133))

Abstract

In the liquid phase, vibrational dynamics and spectra of molecules are affected more or less by intermolecular interactions. There are two types of such effects. One of them is responsible for the modulation of the vibrational frequencies of each molecule, and is called “diagonal”. This effect is operating even for a solute molecule in a dilute solution, and gives rise to a solvation-induced vibrational frequency shift. This effect also induces vibrational dephasing, since the magnitude of the solvation-induced frequency shift is modulated as time evolves according to the liquid dynamics. The other type of the effects of intermolecular interactions on vibrational dynamics and spectra arises from the direct coupling of vibrational modes of different molecules in the system. It is called “off-diagonal”, because it is represented by the off-diagonal terms of the force constant matrix. This effect manifests itself most clearly in the resonant case, where the intrinsic frequencies of the interacting vibrational modes are sufficiently close to each other as compared with the magnitude of the coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fini, G., Mirone, P., and Fortunato, B. (1973) Evidence for short-range orientation effects in dipolar aprotic liquids from vibrational spectroscopy Part 1. — Ethylene and propylene carbonates, J. Chem. Soc. Faraday Trans. 269, 1243–1248.

    Google Scholar 

  2. Wang, C. H. and McHale, J. (1980) Vibrational resonance coupling and the noncoincidence effect of the isotropic and anisotropic Raman spectral components in orientationally anisometric molecular liquids, J. Chem. Phys. 72.4039–4044.

    Article  ADS  Google Scholar 

  3. Logan, D. E. (1986) The non-coincidence effect in the Raman spectra of polar liquids, Chem. Phys. 103, 215–225.

    Article  ADS  Google Scholar 

  4. Torii, H. and Tasumi, M. (1993) Local order and transition dipole coupling in liquid methanol and acetone as the origin of the Raman noncoincidence effect, J. Chem. Phys. 99.8459–8465.

    Article  ADS  Google Scholar 

  5. Torii, H. and Tasumi, M. (1998) Liquid structure, infrared and isotropic/anisotropic Raman noncoincidence of the amide I band, and low-wavenumber vibrational spectra of liquid formamide: Molecular dynamics and ab initio molecular orbital studies, J. Phys. Chem. B 102, 315–321.

    Article  Google Scholar 

  6. McHale, J. L. (1981) The influence of angular dependent intermolecular forces on vibrational spectra of solution phase molecules, J. Chem. Phys. 75. 30–35.

    Article  ADS  Google Scholar 

  7. Woutersen, S. and Bakker, H. J. (1999) Resonant intermolecular transfer of vibrational energy in liquid water, Nature 402, 507–509.

    Article  ADS  Google Scholar 

  8. Torii, H. (2000) Ultrafast anisotropy decay of coherent excitations and the noncoincidence effect for delocalized vibrational modes in liquids, Chem. Phys. Lett. 323, 382–388.

    Article  ADS  Google Scholar 

  9. Logan, D. E. (1986) On the isotropic Raman spectra of isotopic binary mixtures, Mol. Phys. 58, 97–129.

    Article  ADS  Google Scholar 

  10. Logan, D. E. (1989) The Raman noncoincidence effect in dipolar binary mixtures, Chem. Phys. 131, 199–207.

    Article  ADS  Google Scholar 

  11. Torii, H. (2002) The role of electrical property derivatives in intermolecular vibrational interactions and their effects on vibrational spectra, Vib. Spectrosc. 29, 205–209.

    Article  Google Scholar 

  12. Park, E. S. and Boxer, S. G. (2002) Origins of the sensitivity of molecular vibrations to electric fields: carbonyl and nitrosyl stretches in model compounds and proteins, J. PhyYs. Chem. B 106. 5800–5806.

    Google Scholar 

  13. Torii, H. (2002) Field-modulating modes of solvents for describing electrostatic intermolecular vibrational interactions in solution, J. Phys. Chem. A 106, 1167–1172.

    Article  Google Scholar 

  14. Torii, H. (2002) Locally strong polarity in the solvent effect of nonpolar solvent carbon tetrachloride: The role of atomic quadrupoles, Chem. Phys. Lett. 365, 27–33.

    Article  ADS  Google Scholar 

  15. Bishop, D. M. (1998) Molecular vibration and nonlinear optics, Adv. Chem. Phys. 104, 1–40.

    Article  Google Scholar 

  16. Torii, H., Furuya, K., and Tasumi, M. (1998) Raman intensities induced by electrostatic intermolecular interaction and related nonlinear optical properties of a conjugated nelectron system: A theoretical study, J. Phys. Chem. A 102, 8422–8425.

    Article  Google Scholar 

  17. Kirtman, B., Champagne, B., and Luis, J. M. (2000) Efficient treatment of the effect of vibrations on electrical, magnetic, and spectroscopic properties, J. Comput. Chem. 21, 1572–1588.

    Article  Google Scholar 

  18. Torii, H. (2002) Intensity-carrying modes important for vibrational polarizabilities and hyperpolarizabilities of molecules: Derivation from the algebraic properties of formulas and applications, J. Comput. Chem. 23.997–1006.

    Article  Google Scholar 

  19. Torii, H. (2002) Vibrational polarization and opsin shift of retinal Schiff bases: Theoretical study, J. Am. Chem. Soc. 124, 9272–9277.

    Article  Google Scholar 

  20. Torii, H. (1999) Liquid structures and the infrared and isotropic/anisotropic Raman noncoincidence in liquid methanol, a methanol-LiCl solution, and a solvated electron in methanol: Molecular dynamics and ab initio molecular orbital studies, J. Phys. Chem. A 103, 2843–2850.

    Article  Google Scholar 

  21. Musso, M., Toni, H., Ottaviani, P., Asenbaum, A., and Giorgini, M. G. (2002) Noncoincidence effect of vibrational bands of methanol/CC14 mixtures and its relation with concentration dependent liquid structures, J. Phys. Chem. A 106, 10152–10161.

    Article  Google Scholar 

  22. Jones, D. R., Wang, C. H., Christensen, D. H., and Nielson, O. F. (1976) Raman and depolarized Rayleigh scattering studies of molecular motions of liquid 1,2,5-thiadiazole, J. Chem. Phys. 64, 4475- 4483.

    Google Scholar 

  23. Torii, H. (2002) Influence of liquid dynamics on the band broadening and time evolution of vibrational excitations for delocalized vibrational modes in liquids, J. Phys. Chem. A 106, 3281–3286.

    Article  Google Scholar 

  24. Mukamel, S. (1995) Principles of Nonlinear Optical Spectroscopy, Oxford University Press, New York.

    Google Scholar 

  25. Car, R. and Parrinello, M. (1985) Unified approach for molecular dynamics and density-functional theory, Phvs. Rev. Lett. 55.2471–2474.

    Article  ADS  Google Scholar 

  26. Silvestrelli, P. L. and Parrinello, M. (1999) Structural, electronic, and bonding properties of liquid water from first principles, J. Chem. Phys. 111, 3572–3580.

    Article  ADS  Google Scholar 

  27. Izvekov, S. and Voth, G. A. (2002) Car-Parrinello molecular dynamics simulation of liquid water: New results, J. Chem. Phys. 116, 10372–10376.

    Article  ADS  Google Scholar 

  28. Perchard, C. and Perchard, J. P. (1975) Liaison hydrogene en phase liquide et spectrometrie Raman. I: Alcools liquides purs, J. Raman Spectrosc. 3, 277–302.

    Article  ADS  Google Scholar 

  29. Zerda, T. W., Thomas, H. D., Bradley, M., and Jonas, J. (1987) High pressure isotropic bandwidths and frequency shifts of the C-H and C-O modes of liquid methanol, J. Chem. Phys. 86, 3219–3224.

    Article  ADS  Google Scholar 

  30. Bertie, J. E. and Michaelian, K. H. (1998) Comparison of infrared and Raman wave numbers of neat molecular liquids: Which is the correct infrared wave number to use?, J. Chem. Phys. 109, 6764–6771.

    Article  ADS  Google Scholar 

  31. Kecki, Z., Sokolowska, A., and Yarwood, J. (1999) The influence of molecular local order on the non-coincidence Raman spectra of methanol in liquid mixtures, J. Mol. Liq. 81, 213–223.

    Article  Google Scholar 

  32. Torii, H., Pressure Dependence of the Liquid Structure and the Raman Noncoincidence Effect of Liquid Methanol Revisited, Pure Appl. Chem., in press.

    Google Scholar 

  33. Arencibia, A., Taravillo, M., Pérez, F. J., Niňez, J., and Baonza, V. G. (2002) Effect of pressure on hydrogen bonding in liquid methanol, Phys. Rev. Lett. 89, 195–504.

    Article  Google Scholar 

  34. Blum, L. (1972) Invariant expansion. II. Ornstein-Zernike equation for nonspherical molecules and an extended solution to the mean spherical model, J. Chem. Phys. 57, 1862–1869.

    Article  ADS  Google Scholar 

  35. Torii, H. (1994) Approximate theories of the Raman noncoincidence effect: A critical evaluation in the case of liquid acetone, J. Mol. Struct. (Theochem) 311, 199–203.

    Article  ADS  Google Scholar 

  36. Musso, M., Giorgini, M. G., Döge, G., and Asenbaum, A. (1997) The non-coincidence effect in highly diluted acetone-CC14 binary mixtures. I. Experimental results and theoretical predictions, Mol. Phys. 92, 97–104.

    Google Scholar 

  37. Musso, M., Torii, H., Giorgini, M. G., and Döge G. (1999) Concentration dependence of the band profile parameters for the v3 (12C=O) Raman band of acetone in acetoneCC14 binary mixtures. Experimental and Monte Carlo simulation results and their interpretation, J. Chem. Phys. 110, 10076–10085.

    Article  ADS  Google Scholar 

  38. Sokolowska, A. and Kecki, Z. (1993) Crossing of anisotropic and isotropic Raman components in the intermolecular resonance coupling of vibrations, J. Raman Spectrosc. 24, 331–333.

    Article  ADS  Google Scholar 

  39. Perchard, J. P. (1976) Characteristics of the OH (OD) bands of methanol and ethanol in lithium salt-alcohol mixtures: Saturated solutions and crystals, Chem. Phys. Lett. 44, 169–172.

    Article  ADS  Google Scholar 

  40. Kecki, Z. and Sokolowska, A. (1994) Crossing of anisotropic and isotropic Raman components in the intermolecular resonance coupling of vibrations. II — LiC1O4 and Lii solutions in acetone, J. Raman Spectrosc. 25.723–726.

    Article  ADS  Google Scholar 

  41. Craig, D. P. and Thirunamachandran, T. (1989) Third-body mediation of resonance coupling between identical molecules, Chem. Phys. 135, 37–48.

    Article  Google Scholar 

  42. Krimm, S. and Abe, Y. (1972) Intermolecular interaction effects in the amide I vibrations of ßß polypeptides, Proc. Natl. Acad. Sci. USA 69, 2788–2792.

    Article  ADS  Google Scholar 

  43. Moore, W. H. and Krimm, S. (1975) Transition dipole coupling in amide I modes of ß polypeptides, Proc. Natl. Acad. Sci. USA 72, 4933–4935.

    Article  ADS  Google Scholar 

  44. Torii, H. and Tasumi, M. (1992) Model calculations on the amide-I infrared bands of globular proteins, J. Chem. Phys. 96, 3379–3387.

    Article  ADS  Google Scholar 

  45. Torii, H. and Tasumi, M. (1996) Theoretical analyses of the amide I infrared bands of globular proteins, in H. H. Mantsch and D. Chapman (eds.), Infrared Spectroscopy of Biomolecules, Wiley-Liss, New York, pp. 1–18.

    Google Scholar 

  46. Torii, H. and Tasumi, M. (1998) Ab initio molecular orbital study of the amide I vibrational interactions between the peptide groups in di- and tripeptides and considerations on the conformation of the extended helix, J. Raman Spectrosc. 29.81–86.

    Article  ADS  Google Scholar 

  47. Hamm, P., Lim, M., Degrado, W. F., and Hochstrasser, R. M. (1999) The twodimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its threedimensional structure, Proc. Natl. Acad. Sci. USA 96, 2036–2041.

    Article  ADS  Google Scholar 

  48. Choi, J.-H., Ham, S., and Cho, M. (2002) Inter-peptide interaction and delocalization of amide I vibrational excitons in myoglobin and flavodoxin, J. Chem. Phys. 117, 6821–6832.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Torii, H. (2004). Computational Methods for Analyzing the Intermolecular Resonant Vibrational Interactions in Liquids and the Noncoincidence Effect of Vibrational Spectra. In: Samios, J., Durov, V.A. (eds) Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations. NATO Science Series, vol 133. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2384-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2384-2_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1847-3

  • Online ISBN: 978-1-4020-2384-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics