Computational Methods for Analyzing the Intermolecular Resonant Vibrational Interactions in Liquids and the Noncoincidence Effect of Vibrational Spectra

  • Hajime Torii
Part of the NATO Science Series book series (NAII, volume 133)


In the liquid phase, vibrational dynamics and spectra of molecules are affected more or less by intermolecular interactions. There are two types of such effects. One of them is responsible for the modulation of the vibrational frequencies of each molecule, and is called “diagonal”. This effect is operating even for a solute molecule in a dilute solution, and gives rise to a solvation-induced vibrational frequency shift. This effect also induces vibrational dephasing, since the magnitude of the solvation-induced frequency shift is modulated as time evolves according to the liquid dynamics. The other type of the effects of intermolecular interactions on vibrational dynamics and spectra arises from the direct coupling of vibrational modes of different molecules in the system. It is called “off-diagonal”, because it is represented by the off-diagonal terms of the force constant matrix. This effect manifests itself most clearly in the resonant case, where the intrinsic frequencies of the interacting vibrational modes are sufficiently close to each other as compared with the magnitude of the coupling.


Vibrational Frequency Liquid Structure Time Correlation Function Rotational Relaxation Vibrational Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fini, G., Mirone, P., and Fortunato, B. (1973) Evidence for short-range orientation effects in dipolar aprotic liquids from vibrational spectroscopy Part 1. — Ethylene and propylene carbonates, J. Chem. Soc. Faraday Trans. 269, 1243–1248.Google Scholar
  2. 2.
    Wang, C. H. and McHale, J. (1980) Vibrational resonance coupling and the noncoincidence effect of the isotropic and anisotropic Raman spectral components in orientationally anisometric molecular liquids, J. Chem. Phys. 72.4039–4044.ADSCrossRefGoogle Scholar
  3. 3.
    Logan, D. E. (1986) The non-coincidence effect in the Raman spectra of polar liquids, Chem. Phys. 103, 215–225.ADSCrossRefGoogle Scholar
  4. 4.
    Torii, H. and Tasumi, M. (1993) Local order and transition dipole coupling in liquid methanol and acetone as the origin of the Raman noncoincidence effect, J. Chem. Phys. 99.8459–8465.ADSCrossRefGoogle Scholar
  5. 5.
    Torii, H. and Tasumi, M. (1998) Liquid structure, infrared and isotropic/anisotropic Raman noncoincidence of the amide I band, and low-wavenumber vibrational spectra of liquid formamide: Molecular dynamics and ab initio molecular orbital studies, J. Phys. Chem. B 102, 315–321.CrossRefGoogle Scholar
  6. 6.
    McHale, J. L. (1981) The influence of angular dependent intermolecular forces on vibrational spectra of solution phase molecules, J. Chem. Phys. 75. 30–35.ADSCrossRefGoogle Scholar
  7. 7.
    Woutersen, S. and Bakker, H. J. (1999) Resonant intermolecular transfer of vibrational energy in liquid water, Nature 402, 507–509.ADSCrossRefGoogle Scholar
  8. 8.
    Torii, H. (2000) Ultrafast anisotropy decay of coherent excitations and the noncoincidence effect for delocalized vibrational modes in liquids, Chem. Phys. Lett. 323, 382–388.ADSCrossRefGoogle Scholar
  9. 9.
    Logan, D. E. (1986) On the isotropic Raman spectra of isotopic binary mixtures, Mol. Phys. 58, 97–129.ADSCrossRefGoogle Scholar
  10. 10.
    Logan, D. E. (1989) The Raman noncoincidence effect in dipolar binary mixtures, Chem. Phys. 131, 199–207.ADSCrossRefGoogle Scholar
  11. 11.
    Torii, H. (2002) The role of electrical property derivatives in intermolecular vibrational interactions and their effects on vibrational spectra, Vib. Spectrosc. 29, 205–209.CrossRefGoogle Scholar
  12. 12.
    Park, E. S. and Boxer, S. G. (2002) Origins of the sensitivity of molecular vibrations to electric fields: carbonyl and nitrosyl stretches in model compounds and proteins, J. PhyYs. Chem. B 106. 5800–5806.Google Scholar
  13. 13.
    Torii, H. (2002) Field-modulating modes of solvents for describing electrostatic intermolecular vibrational interactions in solution, J. Phys. Chem. A 106, 1167–1172.CrossRefGoogle Scholar
  14. 14.
    Torii, H. (2002) Locally strong polarity in the solvent effect of nonpolar solvent carbon tetrachloride: The role of atomic quadrupoles, Chem. Phys. Lett. 365, 27–33.ADSCrossRefGoogle Scholar
  15. 15.
    Bishop, D. M. (1998) Molecular vibration and nonlinear optics, Adv. Chem. Phys. 104, 1–40.CrossRefGoogle Scholar
  16. 16.
    Torii, H., Furuya, K., and Tasumi, M. (1998) Raman intensities induced by electrostatic intermolecular interaction and related nonlinear optical properties of a conjugated nelectron system: A theoretical study, J. Phys. Chem. A 102, 8422–8425.CrossRefGoogle Scholar
  17. 17.
    Kirtman, B., Champagne, B., and Luis, J. M. (2000) Efficient treatment of the effect of vibrations on electrical, magnetic, and spectroscopic properties, J. Comput. Chem. 21, 1572–1588.CrossRefGoogle Scholar
  18. 18.
    Torii, H. (2002) Intensity-carrying modes important for vibrational polarizabilities and hyperpolarizabilities of molecules: Derivation from the algebraic properties of formulas and applications, J. Comput. Chem. 23.997–1006.CrossRefGoogle Scholar
  19. 19.
    Torii, H. (2002) Vibrational polarization and opsin shift of retinal Schiff bases: Theoretical study, J. Am. Chem. Soc. 124, 9272–9277.CrossRefGoogle Scholar
  20. 20.
    Torii, H. (1999) Liquid structures and the infrared and isotropic/anisotropic Raman noncoincidence in liquid methanol, a methanol-LiCl solution, and a solvated electron in methanol: Molecular dynamics and ab initio molecular orbital studies, J. Phys. Chem. A 103, 2843–2850.CrossRefGoogle Scholar
  21. 21.
    Musso, M., Toni, H., Ottaviani, P., Asenbaum, A., and Giorgini, M. G. (2002) Noncoincidence effect of vibrational bands of methanol/CC14 mixtures and its relation with concentration dependent liquid structures, J. Phys. Chem. A 106, 10152–10161.CrossRefGoogle Scholar
  22. 22.
    Jones, D. R., Wang, C. H., Christensen, D. H., and Nielson, O. F. (1976) Raman and depolarized Rayleigh scattering studies of molecular motions of liquid 1,2,5-thiadiazole, J. Chem. Phys. 64, 4475- 4483.Google Scholar
  23. 23.
    Torii, H. (2002) Influence of liquid dynamics on the band broadening and time evolution of vibrational excitations for delocalized vibrational modes in liquids, J. Phys. Chem. A 106, 3281–3286.CrossRefGoogle Scholar
  24. 24.
    Mukamel, S. (1995) Principles of Nonlinear Optical Spectroscopy, Oxford University Press, New York.Google Scholar
  25. 25.
    Car, R. and Parrinello, M. (1985) Unified approach for molecular dynamics and density-functional theory, Phvs. Rev. Lett. 55.2471–2474.ADSCrossRefGoogle Scholar
  26. 26.
    Silvestrelli, P. L. and Parrinello, M. (1999) Structural, electronic, and bonding properties of liquid water from first principles, J. Chem. Phys. 111, 3572–3580.ADSCrossRefGoogle Scholar
  27. 27.
    Izvekov, S. and Voth, G. A. (2002) Car-Parrinello molecular dynamics simulation of liquid water: New results, J. Chem. Phys. 116, 10372–10376.ADSCrossRefGoogle Scholar
  28. 28.
    Perchard, C. and Perchard, J. P. (1975) Liaison hydrogene en phase liquide et spectrometrie Raman. I: Alcools liquides purs, J. Raman Spectrosc. 3, 277–302.ADSCrossRefGoogle Scholar
  29. 29.
    Zerda, T. W., Thomas, H. D., Bradley, M., and Jonas, J. (1987) High pressure isotropic bandwidths and frequency shifts of the C-H and C-O modes of liquid methanol, J. Chem. Phys. 86, 3219–3224.ADSCrossRefGoogle Scholar
  30. 30.
    Bertie, J. E. and Michaelian, K. H. (1998) Comparison of infrared and Raman wave numbers of neat molecular liquids: Which is the correct infrared wave number to use?, J. Chem. Phys. 109, 6764–6771.ADSCrossRefGoogle Scholar
  31. 31.
    Kecki, Z., Sokolowska, A., and Yarwood, J. (1999) The influence of molecular local order on the non-coincidence Raman spectra of methanol in liquid mixtures, J. Mol. Liq. 81, 213–223.CrossRefGoogle Scholar
  32. 32.
    Torii, H., Pressure Dependence of the Liquid Structure and the Raman Noncoincidence Effect of Liquid Methanol Revisited, Pure Appl. Chem., in press.Google Scholar
  33. 33.
    Arencibia, A., Taravillo, M., Pérez, F. J., Niňez, J., and Baonza, V. G. (2002) Effect of pressure on hydrogen bonding in liquid methanol, Phys. Rev. Lett. 89, 195–504.CrossRefGoogle Scholar
  34. 34.
    Blum, L. (1972) Invariant expansion. II. Ornstein-Zernike equation for nonspherical molecules and an extended solution to the mean spherical model, J. Chem. Phys. 57, 1862–1869.ADSCrossRefGoogle Scholar
  35. 35.
    Torii, H. (1994) Approximate theories of the Raman noncoincidence effect: A critical evaluation in the case of liquid acetone, J. Mol. Struct. (Theochem) 311, 199–203.ADSCrossRefGoogle Scholar
  36. 36.
    Musso, M., Giorgini, M. G., Döge, G., and Asenbaum, A. (1997) The non-coincidence effect in highly diluted acetone-CC14 binary mixtures. I. Experimental results and theoretical predictions, Mol. Phys. 92, 97–104.Google Scholar
  37. 37.
    Musso, M., Torii, H., Giorgini, M. G., and Döge G. (1999) Concentration dependence of the band profile parameters for the v3 (12C=O) Raman band of acetone in acetoneCC14 binary mixtures. Experimental and Monte Carlo simulation results and their interpretation, J. Chem. Phys. 110, 10076–10085.ADSCrossRefGoogle Scholar
  38. 38.
    Sokolowska, A. and Kecki, Z. (1993) Crossing of anisotropic and isotropic Raman components in the intermolecular resonance coupling of vibrations, J. Raman Spectrosc. 24, 331–333.ADSCrossRefGoogle Scholar
  39. 39.
    Perchard, J. P. (1976) Characteristics of the OH (OD) bands of methanol and ethanol in lithium salt-alcohol mixtures: Saturated solutions and crystals, Chem. Phys. Lett. 44, 169–172.ADSCrossRefGoogle Scholar
  40. 40.
    Kecki, Z. and Sokolowska, A. (1994) Crossing of anisotropic and isotropic Raman components in the intermolecular resonance coupling of vibrations. II — LiC1O4 and Lii solutions in acetone, J. Raman Spectrosc. 25.723–726.ADSCrossRefGoogle Scholar
  41. 41.
    Craig, D. P. and Thirunamachandran, T. (1989) Third-body mediation of resonance coupling between identical molecules, Chem. Phys. 135, 37–48.CrossRefGoogle Scholar
  42. 42.
    Krimm, S. and Abe, Y. (1972) Intermolecular interaction effects in the amide I vibrations of ßß polypeptides, Proc. Natl. Acad. Sci. USA 69, 2788–2792.ADSCrossRefGoogle Scholar
  43. 43.
    Moore, W. H. and Krimm, S. (1975) Transition dipole coupling in amide I modes of ß polypeptides, Proc. Natl. Acad. Sci. USA 72, 4933–4935.ADSCrossRefGoogle Scholar
  44. 44.
    Torii, H. and Tasumi, M. (1992) Model calculations on the amide-I infrared bands of globular proteins, J. Chem. Phys. 96, 3379–3387.ADSCrossRefGoogle Scholar
  45. 45.
    Torii, H. and Tasumi, M. (1996) Theoretical analyses of the amide I infrared bands of globular proteins, in H. H. Mantsch and D. Chapman (eds.), Infrared Spectroscopy of Biomolecules, Wiley-Liss, New York, pp. 1–18.Google Scholar
  46. 46.
    Torii, H. and Tasumi, M. (1998) Ab initio molecular orbital study of the amide I vibrational interactions between the peptide groups in di- and tripeptides and considerations on the conformation of the extended helix, J. Raman Spectrosc. 29.81–86.ADSCrossRefGoogle Scholar
  47. 47.
    Hamm, P., Lim, M., Degrado, W. F., and Hochstrasser, R. M. (1999) The twodimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its threedimensional structure, Proc. Natl. Acad. Sci. USA 96, 2036–2041.ADSCrossRefGoogle Scholar
  48. 48.
    Choi, J.-H., Ham, S., and Cho, M. (2002) Inter-peptide interaction and delocalization of amide I vibrational excitons in myoglobin and flavodoxin, J. Chem. Phys. 117, 6821–6832.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Hajime Torii
    • 1
  1. 1.Department of Chemistry, School of EducationShizuoka University836 Ohya, ShizuokaJapan

Personalised recommendations