Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 133))

  • 307 Accesses

Abstract

The aim of this contribution to the summer school is to show how atomistic computer simulations can be used to study and interpret vibrational relaxation in solutions. In the first part of the article the three distinct relaxation rates (population relaxation T , decoherence rate T -12 and the pure dephasing rate (T2*)-1) are introduced and theoretical expressions for the rates involving solventsolute forces and solute-solvent energy derivatives are developed from perturbation theory. In the second part the way in which relaxation rates can be determined from simulations of flexible molecules is illustrated using the example of the stretching modes of the triiodide ion. The origin and explanation of the variations in rate are then discussed combining data from simulations of rigid solute molecule and the expressions from perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M. P. and Tildesley, D. J. (1994) Computer Simulation of Liquids, Clarendon Press, Oxford.

    Google Scholar 

  2. Oxtoby, D. W., Levesque, D. and Weis, J. J. (1978) A molecular dynamics simulation of dephasing in liquid nitrogen, J. Chem. Phys. 68, 5528–5533.

    Article  ADS  Google Scholar 

  3. Levesque, D. and Weis, J. J. (1980) A molecular dynamics simulation of dephasing in liquid nitrogen. II. Effect of the pair potential on dephasing, J. Chem. Phys. 72, 2744–2749.

    Article  ADS  Google Scholar 

  4. Levesque, D., Weis, J. J. and Oxtoby, D. W. (1983) A molecular dynamics simulation of rotational and vibrational relaxation in liquid HC, J. Chem. Phys. 79, 917–925.

    Article  ADS  Google Scholar 

  5. Chesnoy, J. and Weis, J. J. (1986) Density dependence of the dephasing and energy relaxation times by computer simulation, J. Chem. Phys. 84, 5378–5388.

    Article  ADS  Google Scholar 

  6. Westlund, P. O. and Lynden-Bell, R. M. (1987) A study of vibrational dephasing of the A1 modes of CH3CN in computer simulation of liquid phase, Mol. Phys. 60, 1189–1209.

    Article  ADS  Google Scholar 

  7. Lynden-Bell, R. M. and Westlund, P. O. (1987) The effects of pressure and temperature on vibrational dephasing in a simulation of liquid CH3CN, Mol. Phys. 61, 1541–1547.

    Article  ADS  Google Scholar 

  8. Postma, J. P. M., Berendsen, H. J. C. and Straatsma, T. P. (1984) Intramolecular vibrations from molecular dynamics simulations of liquid water, J. Phys. C4, 31–40.

    Google Scholar 

  9. Chorny, I., Vieceli, J. and Benjamin, I. (2002) Molecular dynamics study of the vibrational relaxation of OCIO in bulk liquids, J. Chem. Phys. 116, 8904–8911.

    Article  ADS  Google Scholar 

  10. Poulsen, J., Nymand, T. M. and Keiding, S. R. (2001) Asymmetric stretch vibrational energy relaxation of OC1O in liquid water, Chem. Phys. Lett. 343, 581–587.

    Article  ADS  Google Scholar 

  11. Morita, A. and Kato, S. (1998) Vibrational relaxation of azide ion in water: The role of intramolecular charge fluctuation and solvent-induced vibrational coupling, J. Chem. Phys. 109, 5511–5523.

    Article  ADS  Google Scholar 

  12. Diraison, D., Guissani, Y., Leicknam, J. C. and Bratos, S. (1996) Femtosecond solvation dynamics of water: solvent response to vibrational excitation of the solute, Chem. Phys. Lett. 258, 348–351.

    Article  ADS  Google Scholar 

  13. Margulis, C. J., Coker, D. F. and Lynden-Bell, R. M. (2001) A Monte Carlo study of symmetry breaking of I3- in aqueous solution using a multistate diabatic Hamiltonian, J. Chem. Phys. 114, 367–376.

    Article  ADS  Google Scholar 

  14. Margulis, C. J., Coker, D. F. and Lynden-Bell, R. M. (2001) Symmetry breaking of the triiodide ion in acetonitrile solution, Chem. Phys. Lett. 341, 557–560.

    Article  ADS  Google Scholar 

  15. Zhang, F. S. and Lynden-Bell, R. M. (2002) A simulation study of vibrational relaxation of I3 in liquids, submitted for publication.

    Google Scholar 

  16. Zhang, F. S. and Lynden-Bell, R. M. (2002) Pure vibrational dephasing of triiodide in liquids and glasses, Mod. Phys. Lett. in press.

    Google Scholar 

  17. Lynden-Bell, R. M. and Zhang, F. S. (2002) in preparation.

    Google Scholar 

  18. Oxtoby, D. W. (1979) Dephasing of molecular vibrations in liquids, Adv. Chem. Phys. 40, 1–48.

    Article  Google Scholar 

  19. Okazaki, S. (2001) Dynamical approach to vibrational relaxation, Adv. Chem. Phys. 118, 191–270.

    Article  Google Scholar 

  20. Rothschild, W. G. (1984) Dynamics of Molecular Liquids Wiley-Interscience, New York.

    Google Scholar 

  21. Bader, J. S. and Berne, B. J. (1994) Quantum and classical relaxation rates from classical simulations, J. Chem. Phys. 100, 8359–8366.

    Article  ADS  Google Scholar 

  22. Egorov, S. A. and Skinner, J. L. (1996) A theory of vibrational energy relaxation in liquids, J. Chem. Phys. 105, 7047–7058.

    Article  ADS  Google Scholar 

  23. Egorov, S. A., and Berne, B. J. (1997) Vibrational energy relaxation in the condensed phases: Quantum vs classical bath for multiphonon processes, J. Chem. Phys. 107, 6050–6061.

    Article  ADS  Google Scholar 

  24. Cherayil, B. J. and Fayer, M. D. (1997) Vibrational relaxation in supercritical fluids near the critical point, J. Chem. Phys.107, 7642–7650.

    Article  ADS  Google Scholar 

  25. Rostkier-Edelstein, D., Graf, P. and Nitzan, A. (1997) Computing vibrational energy relaxation for high-frequency modes in condensed environment, J. Chem. Phys. 107, 10470–10479.

    Article  ADS  Google Scholar 

  26. Kubo R. (1963) Stochastic processes in chemical physics. Adv Chem. Phys. 13, 101–127.

    Google Scholar 

  27. Whitnell, R. M., Wilson, K. R. and Hynes J. T. (1990) Fast vibrational relaxation for a dipolar molecule in a polar solvent, J. Phys. Chem. 94, 8625–8628.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lynden-Bell, R.M., Zhang, F.S. (2004). Using Simulations to Study Vibrational Relaxation of Molecules in Liquids. In: Samios, J., Durov, V.A. (eds) Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations. NATO Science Series, vol 133. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2384-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2384-2_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1847-3

  • Online ISBN: 978-1-4020-2384-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics