Using Simulations to Study Vibrational Relaxation of Molecules in Liquids

  • R. M. Lynden-Bell
  • F. S. Zhang
Part of the NATO Science Series book series (NAII, volume 133)


The aim of this contribution to the summer school is to show how atomistic computer simulations can be used to study and interpret vibrational relaxation in solutions. In the first part of the article the three distinct relaxation rates (population relaxation T , decoherence rate T 2 -1 and the pure dephasing rate (T2*)-1) are introduced and theoretical expressions for the rates involving solventsolute forces and solute-solvent energy derivatives are developed from perturbation theory. In the second part the way in which relaxation rates can be determined from simulations of flexible molecules is illustrated using the example of the stretching modes of the triiodide ion. The origin and explanation of the variations in rate are then discussed combining data from simulations of rigid solute molecule and the expressions from perturbation theory.


Relaxation Rate Instantaneous Frequency Energy Relaxation Symmetric Mode Vibrational Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, M. P. and Tildesley, D. J. (1994) Computer Simulation of Liquids, Clarendon Press, Oxford.Google Scholar
  2. 2.
    Oxtoby, D. W., Levesque, D. and Weis, J. J. (1978) A molecular dynamics simulation of dephasing in liquid nitrogen, J. Chem. Phys. 68, 5528–5533.ADSCrossRefGoogle Scholar
  3. 3.
    Levesque, D. and Weis, J. J. (1980) A molecular dynamics simulation of dephasing in liquid nitrogen. II. Effect of the pair potential on dephasing, J. Chem. Phys. 72, 2744–2749.ADSCrossRefGoogle Scholar
  4. 4.
    Levesque, D., Weis, J. J. and Oxtoby, D. W. (1983) A molecular dynamics simulation of rotational and vibrational relaxation in liquid HC, J. Chem. Phys. 79, 917–925.ADSCrossRefGoogle Scholar
  5. 5.
    Chesnoy, J. and Weis, J. J. (1986) Density dependence of the dephasing and energy relaxation times by computer simulation, J. Chem. Phys. 84, 5378–5388.ADSCrossRefGoogle Scholar
  6. 6.
    Westlund, P. O. and Lynden-Bell, R. M. (1987) A study of vibrational dephasing of the A1 modes of CH3CN in computer simulation of liquid phase, Mol. Phys. 60, 1189–1209.ADSCrossRefGoogle Scholar
  7. 7.
    Lynden-Bell, R. M. and Westlund, P. O. (1987) The effects of pressure and temperature on vibrational dephasing in a simulation of liquid CH3CN, Mol. Phys. 61, 1541–1547.ADSCrossRefGoogle Scholar
  8. 8.
    Postma, J. P. M., Berendsen, H. J. C. and Straatsma, T. P. (1984) Intramolecular vibrations from molecular dynamics simulations of liquid water, J. Phys. C4, 31–40.Google Scholar
  9. 9.
    Chorny, I., Vieceli, J. and Benjamin, I. (2002) Molecular dynamics study of the vibrational relaxation of OCIO in bulk liquids, J. Chem. Phys. 116, 8904–8911.ADSCrossRefGoogle Scholar
  10. 10.
    Poulsen, J., Nymand, T. M. and Keiding, S. R. (2001) Asymmetric stretch vibrational energy relaxation of OC1O in liquid water, Chem. Phys. Lett. 343, 581–587.ADSCrossRefGoogle Scholar
  11. 11.
    Morita, A. and Kato, S. (1998) Vibrational relaxation of azide ion in water: The role of intramolecular charge fluctuation and solvent-induced vibrational coupling, J. Chem. Phys. 109, 5511–5523.ADSCrossRefGoogle Scholar
  12. 12.
    Diraison, D., Guissani, Y., Leicknam, J. C. and Bratos, S. (1996) Femtosecond solvation dynamics of water: solvent response to vibrational excitation of the solute, Chem. Phys. Lett. 258, 348–351.ADSCrossRefGoogle Scholar
  13. 13.
    Margulis, C. J., Coker, D. F. and Lynden-Bell, R. M. (2001) A Monte Carlo study of symmetry breaking of I3- in aqueous solution using a multistate diabatic Hamiltonian, J. Chem. Phys. 114, 367–376.ADSCrossRefGoogle Scholar
  14. 14.
    Margulis, C. J., Coker, D. F. and Lynden-Bell, R. M. (2001) Symmetry breaking of the triiodide ion in acetonitrile solution, Chem. Phys. Lett. 341, 557–560.ADSCrossRefGoogle Scholar
  15. 15.
    Zhang, F. S. and Lynden-Bell, R. M. (2002) A simulation study of vibrational relaxation of I3 in liquids, submitted for publication.Google Scholar
  16. 16.
    Zhang, F. S. and Lynden-Bell, R. M. (2002) Pure vibrational dephasing of triiodide in liquids and glasses, Mod. Phys. Lett. in press.Google Scholar
  17. 17.
    Lynden-Bell, R. M. and Zhang, F. S. (2002) in preparation.Google Scholar
  18. 18.
    Oxtoby, D. W. (1979) Dephasing of molecular vibrations in liquids, Adv. Chem. Phys. 40, 1–48.CrossRefGoogle Scholar
  19. 19.
    Okazaki, S. (2001) Dynamical approach to vibrational relaxation, Adv. Chem. Phys. 118, 191–270.CrossRefGoogle Scholar
  20. 20.
    Rothschild, W. G. (1984) Dynamics of Molecular Liquids Wiley-Interscience, New York.Google Scholar
  21. 21.
    Bader, J. S. and Berne, B. J. (1994) Quantum and classical relaxation rates from classical simulations, J. Chem. Phys. 100, 8359–8366.ADSCrossRefGoogle Scholar
  22. 22.
    Egorov, S. A. and Skinner, J. L. (1996) A theory of vibrational energy relaxation in liquids, J. Chem. Phys. 105, 7047–7058.ADSCrossRefGoogle Scholar
  23. 23.
    Egorov, S. A., and Berne, B. J. (1997) Vibrational energy relaxation in the condensed phases: Quantum vs classical bath for multiphonon processes, J. Chem. Phys. 107, 6050–6061.ADSCrossRefGoogle Scholar
  24. 24.
    Cherayil, B. J. and Fayer, M. D. (1997) Vibrational relaxation in supercritical fluids near the critical point, J. Chem. Phys.107, 7642–7650.ADSCrossRefGoogle Scholar
  25. 25.
    Rostkier-Edelstein, D., Graf, P. and Nitzan, A. (1997) Computing vibrational energy relaxation for high-frequency modes in condensed environment, J. Chem. Phys. 107, 10470–10479.ADSCrossRefGoogle Scholar
  26. 26.
    Kubo R. (1963) Stochastic processes in chemical physics. Adv Chem. Phys. 13, 101–127.Google Scholar
  27. 27.
    Whitnell, R. M., Wilson, K. R. and Hynes J. T. (1990) Fast vibrational relaxation for a dipolar molecule in a polar solvent, J. Phys. Chem. 94, 8625–8628.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • R. M. Lynden-Bell
    • 1
  • F. S. Zhang
    • 1
  1. 1.Atomistic Simulation GroupQueen’s University BelfastBelfastUK

Personalised recommendations