Advertisement

Computer Simulation Studies of Solvation Dynamics in Mixtures

  • Branka M. Ladanyi
Chapter
  • 205 Downloads
Part of the NATO Science Series book series (NAII, volume 133)

Abstract

Solvation dynamics (SD) in liquid mixtures often occurs on a slower time scale than predicted on the basis of the mixture dielectric properties. In onecomponent polar liquids, the SD mechanism is dominated by reorientation of solvent molecules in response to the change in solute charge distribution. If the solute polarity changes upon electronic excitation, the mixed solvent response includes a change in local composition. SD in mixtures will usually depend on the time scale of this process. The relative importance of the solvent redistribution step varies with solvent component polarity, composition, the extent of change in preferential solvation and other factors. Considerable progress towards understanding SD in mixtures has been made in recent years, through experiments, computer simulation and theory. I will review some of the recent results, focusing primarily on computer simulation studies.

Keywords

Solvation Free Energy Preferential Solvation Solvation Mechanism Solvation Dynamic Solvent Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maroncelli, M. (1993). The dynamics of solvation in polar liquids. J. Mol. Liq. 57, 1–37.CrossRefGoogle Scholar
  2. 2.
    Kumar, P.V., and Maroncelli, M. (1995). Polar solvation dynamics of polyatomic solutes: simulation studies in acetonitrile and methanol. J. Chem. Phys. 103, 3038–3060.ADSCrossRefGoogle Scholar
  3. 3.
    Reynolds, L., Gardecki, J.A., Frankland, S.J.V., Horng, M.L., and Maroncelli, M. (1996). Dipole Solvation in Nondipolar Solvents: Experimental Studies of Reorganization Energies and Solvation Dynamics. J. Phys. Chem. 100, 10337–10354.CrossRefGoogle Scholar
  4. 4.
    Simon, J.D. (1988). Time-resolved studies of solvation in polar media. Acc. Chem. Res. 21, 128–134.CrossRefGoogle Scholar
  5. 5.
    Bagchi, B. (1989). Dynamics of solvation and charge transfer reactions in dipolar liquids. Annu. Rev. Phys. Chem. 40, 115–141.ADSCrossRefGoogle Scholar
  6. 6.
    Maroncelli, M., Maclnnis, J., and Fleming, G.R. (1989). Polar solvent dynamics and electrontransfer reactions. Science 243, 1674–1681.ADSCrossRefGoogle Scholar
  7. 7.
    Rossky, P.J., and Simon, J.D. (1994). Dynamics of chemical processes in polar solvents. Nature (London) 370, 263–269.ADSCrossRefGoogle Scholar
  8. 8.
    Stratt, R.M., and Maroncelli, M. (1996). Nonreactive Dynamics in Solution: The Emerging Molecular View of Solvation Dynamics and Vibrational Relaxation. J. Phys. Chem. 100, 12981–12996.CrossRefGoogle Scholar
  9. 9.
    Fleming, G.R., and Cho, M. (1996). Chromophore-solvent dynamics. Annu. Rev. Phys. Chem. 47, 109–134.ADSCrossRefGoogle Scholar
  10. 10.
    Ladanyi, B.M. (2000). Mechanistic Studies of Solvation Dynamics in Liquids. In Theoretical Methods in Condensed Phase Chemistry, S.D. Schwartz, ed. (Dordrecht, the Netherlands: Kluwer), pp. 207–233.Google Scholar
  11. 11.
    Ladanyi, B.M., and Stratt, R.M. (1996). Short-Time Dynamics of Solvation: Relationship between Polar and Nonpolar Solvation. J. Phys. Chem. 100, 1266–1282.CrossRefGoogle Scholar
  12. 12.
    Ladanyi, B.M. (1997). Molecular mechanisms of solvation dynamics in polar and nonpolar liquids. In Electron Ion Transfer Condens. Media, A.A. Kornyshev, M. Tosi and J. Ulstrup, eds. (Singapore: World Scientific), pp. 110–129.Google Scholar
  13. 13.
    Ladanyi, B.M., and Maroncelli, M. (1998). Mechanisms of solvation dynamics of polyatomic solutes in polar and nondipolar solvents: A simulation study. J. Chem. Phys. 109, 3204–3221.ADSCrossRefGoogle Scholar
  14. 14.
    Day, T.J.F., and Patey, G.N. (1997). Ion solvation dynamics in binary mixtures. J. Chem. Phys. 106, 2782–2791.ADSCrossRefGoogle Scholar
  15. 15.
    Cichos, F., Willert, A., Rempel, U., and von Borczyskowski, C. (1997). Solvation Dynamics in Mixtures of Polar and Nonpolar Solvents. J. Phys. Chem. A 101, 8179–8185.CrossRefGoogle Scholar
  16. 16.
    Martins, L.R., Tamashiro, A., Laria, D., and Skaf, M.S. (2003). Solvation dynamics of coumarin 153 in dimethylsulfoxide-water mixtures: Molecular dynamics simulations. J. Chem. Phys. 118, 5955–5963.ADSCrossRefGoogle Scholar
  17. 17.
    Yoshimori, A., Day, T.J.F., and Patey, G.N. (1998). An investigation of dynamical density functional theory for solvation in simple mixtures. J. Chem. Phys. 108, 6378–6386.ADSCrossRefGoogle Scholar
  18. 18.
    Day, T.J.F., and Patey, G.N. (1999). Ion solvation dynamics in water-methanol and water- dimethylsulfoxide mixtures. J. Chem. Phys. 110, 10937–10944.ADSCrossRefGoogle Scholar
  19. 19.
    Nishiyama, K., and Okada, T. (1998). Relaxation dynamics of inhomogeneous spectral width in binary solvents studied by transient hole-burning spectroscopy. J. Phys. Chem. A 102, 9729–9733.CrossRefGoogle Scholar
  20. 20.
    Laria, D., and Skaf, M.S. (1999). Solvation response of polar liquid mixtures: Waterdimethylsulfoxide. J. Chem. Phys. 111, 300–309.ADSCrossRefGoogle Scholar
  21. 21.
    Cichos, F., Brown, R., Rempel, U., and Von Borczyskowski, C. (1999). Molecular dynamics simulations of the solvation of coumarin 153 in a mixture of an alkane and an alcohol. J. Phys. Chem. A 103, 2506–2512.CrossRefGoogle Scholar
  22. 22.
    Petrov, N.K., Wiessner, A., and Staerk, H. (1998). Transient dynamics of solvatochromic shift in binary solvents. J. Chem. Phys. 108, 2326–2330.ADSCrossRefGoogle Scholar
  23. 23.
    Luther, B.M., Kimmel, J.R., and Levinger, N.E. (2002). Dynamics of polar solvation in acetonitrilebenzene binary mixtures: Role of dipolar and quadrupolar contributions to solvation. J. Chem. Phys. 116, 3370–3377.ADSCrossRefGoogle Scholar
  24. 24.
    Ladanyi, B.M., and Perng, B.C. (2002). Solvation dynamics in dipolar-quadrupolar mixtures: A computer simulation study of dipole creation in mixtures of acetonitrile and benzene. J. Phys. Chem. A 106, 6922–6934.CrossRefGoogle Scholar
  25. 25.
    Suppan, P. (1987). Local Polarity of Solvent Mixtures in the Field of Electronically Excited Molecules and Exciplexes. J. Chem. Soc. Faraday Trans. I 83, 495–509.CrossRefGoogle Scholar
  26. 26.
    Suppan, P. (1988). Time-Resolved Luminescence Spectra of Dipolar Excited Molecules in Liquid and Solid Mixtures - Dynamics of Dielectric Enrichment and Microscopic Motions. Faraday Discussions, 173–184.Google Scholar
  27. 27.
    Khajehpour, M., and Kauffman, J.F. (2000). Dielectric enrichment of 1-(9-anthryl)-3-(4-N,N- dimethylaniline) propane in hexane-ethanol mixtures. J. Phys. Chem. A 104, 7151–7159.CrossRefGoogle Scholar
  28. 28.
    Khajehpour, M., Welch, C.M., Kleiner, K.A., and Kauffman, J.F. (2001). Separation of dielectric nonideality from preferential solvation in binary solvent systems: An experimental examination of the relationship between solvatochromism and local solvent composition around a dipolar solute. J. Phys. Chem. A 105, 5372–5379.CrossRefGoogle Scholar
  29. 29.
    Reichardt, C. (1988). Solvents and Solvent Effects in Organic Chemistry, 2nd Edition (New York: VCH).Google Scholar
  30. 30.
    Skaf, M.S., and Ladanyi, B.M. (1996). Molecular Dynamics Simulation of Solvation Dynamics in Methanol-Water Mixtures. J. Phys. Chem. 100, 18258–18268.CrossRefGoogle Scholar
  31. 31.
    Skaf, M.S., Borin, I.A., and Ladanyi, B.M. (1997). Simulation of solvation dynamics in H-bonding solvents: dynamics of solute-solvent H-bonds in methanol-water mixtures. Mol. Eng. 7, 457–472.CrossRefGoogle Scholar
  32. 32.
    Yoshimori, A., Day, T.J.F., and Patey, G.N. (1998). Theory of ion solvation dynamics in mixed dipolar solvents. J. Chem. Phys. 109, 3222–3231.ADSCrossRefGoogle Scholar
  33. 33.
    Gardecki, J.A., and Maroncelli, M. (1999). Solvation and rotational dynamics in acetonitrile propylene carbonate mixtures: a binary system for use in dynamical solvent effect studies. Chem. Phys. Lett. 301, 571–578.ADSCrossRefGoogle Scholar
  34. 34.
    Petrov, N.K., Wiessner, A., and Staerk, H. (2001). A simple kinetic model of preferential solvation in binary mixtures. Chem. Phys. Lett. 349, 517–520.ADSCrossRefGoogle Scholar
  35. 35.
    Agmon, N. (2002). The dynamics of preferential solvation. Journal of Physical Chemistry A 106, 7256–7260.CrossRefGoogle Scholar
  36. 36.
    Bader, J.S., and Chandler, D. (1989). Computer simulation of photochemically induced electron transfer. Chem. Phys. Lett. 157, 501–504.ADSCrossRefGoogle Scholar
  37. 37.
    Fonseca, T., and Ladanyi, B.M. (1991). Breakdown of linear response for solvation dynamics in methanol. J. Phys. Chem. 95, 2116–2119.CrossRefGoogle Scholar
  38. 38.
    Carter, E.A., and Hynes, J.T. (1991). Solvation dynamics of an ion pair in a polar solvent: Timedependent fluorescence and photochemical charge transfer. J. Chem. Phys. 94, 5961–5979.ADSCrossRefGoogle Scholar
  39. 39.
    Horng, M.L., Gardecki, J.A., Papazyan, A., and Maroncelli, M. (1995). Subpicosecond Measurements of Polar Solvation Dynamics: Coumarin 153 Revisited. J. Phys. Chem. 99, 17311–17337.CrossRefGoogle Scholar
  40. 40.
    Ando, K., and Kato, S. (1991). Dielectric relaxation dynamics of water and methanol solutions associated with the ionization of N,N-dimethylaniline: theoretical analyses. J. Chem. Phys. 95, 5966–5982.ADSCrossRefGoogle Scholar
  41. 41.
    Phelps, D.K., Weaver, M.J., and Ladanyi, B.M. (1993). Solvent dynamic effects in electron transfer: molecular dynamics simulations of reactions in methanol. Chem. Phys. 176, 575–588.CrossRefGoogle Scholar
  42. 42.
    Fonseca, T., and Ladanyi, B.M. (1994). Solvation dynamics in methanol: solute and perturbation dependence. J. Mol. Liq. 60, 1–24.CrossRefGoogle Scholar
  43. 43.
    Re, M., and Laria, D. (1997). Dynamics of Solvation in Supercritical Water. J. Phys. Chem. B 101, 10494–10505.Google Scholar
  44. 44.
    Aherne, D., Tran, V., and Schwartz, B.J. (2000). Nonlinear, Nonpolar Solvation Dynamics in Water: The Roles of Electrostriction and Solvent Translation in the Breakdown of Linear Response. J. Phys. Chem. B 104, 5382–5394.Google Scholar
  45. 45.
    Maroncelli, M., and Fleming, G.R. (1988). Computer simulation of the dynamics of aqueous solvation. J. Chem. Phys. 89, 5044–5069.ADSCrossRefGoogle Scholar
  46. 46.
    Skaf, M.S., and Ladanyi, B.M. (1995). Computer simulation of solvation dynamics in hydrogenbonding liquids. THEOCHEM 335, 181–188.CrossRefGoogle Scholar
  47. 47.
    Luther, B.M. (2000). Ph. D. thesis, Colorado State University, Fort Collins, CO, U.S.A.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Branka M. Ladanyi
    • 1
  1. 1.Department of ChemistryColorado State UniversityFort CollinsUSA

Personalised recommendations