Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 133))

  • 310 Accesses

Abstract

Solvation dynamics (SD) in liquid mixtures often occurs on a slower time scale than predicted on the basis of the mixture dielectric properties. In onecomponent polar liquids, the SD mechanism is dominated by reorientation of solvent molecules in response to the change in solute charge distribution. If the solute polarity changes upon electronic excitation, the mixed solvent response includes a change in local composition. SD in mixtures will usually depend on the time scale of this process. The relative importance of the solvent redistribution step varies with solvent component polarity, composition, the extent of change in preferential solvation and other factors. Considerable progress towards understanding SD in mixtures has been made in recent years, through experiments, computer simulation and theory. I will review some of the recent results, focusing primarily on computer simulation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maroncelli, M. (1993). The dynamics of solvation in polar liquids. J. Mol. Liq. 57, 1–37.

    Article  Google Scholar 

  2. Kumar, P.V., and Maroncelli, M. (1995). Polar solvation dynamics of polyatomic solutes: simulation studies in acetonitrile and methanol. J. Chem. Phys. 103, 3038–3060.

    Article  ADS  Google Scholar 

  3. Reynolds, L., Gardecki, J.A., Frankland, S.J.V., Horng, M.L., and Maroncelli, M. (1996). Dipole Solvation in Nondipolar Solvents: Experimental Studies of Reorganization Energies and Solvation Dynamics. J. Phys. Chem. 100, 10337–10354.

    Article  Google Scholar 

  4. Simon, J.D. (1988). Time-resolved studies of solvation in polar media. Acc. Chem. Res. 21, 128–134.

    Article  Google Scholar 

  5. Bagchi, B. (1989). Dynamics of solvation and charge transfer reactions in dipolar liquids. Annu. Rev. Phys. Chem. 40, 115–141.

    Article  ADS  Google Scholar 

  6. Maroncelli, M., Maclnnis, J., and Fleming, G.R. (1989). Polar solvent dynamics and electrontransfer reactions. Science 243, 1674–1681.

    Article  ADS  Google Scholar 

  7. Rossky, P.J., and Simon, J.D. (1994). Dynamics of chemical processes in polar solvents. Nature (London) 370, 263–269.

    Article  ADS  Google Scholar 

  8. Stratt, R.M., and Maroncelli, M. (1996). Nonreactive Dynamics in Solution: The Emerging Molecular View of Solvation Dynamics and Vibrational Relaxation. J. Phys. Chem. 100, 12981–12996.

    Article  Google Scholar 

  9. Fleming, G.R., and Cho, M. (1996). Chromophore-solvent dynamics. Annu. Rev. Phys. Chem. 47, 109–134.

    Article  ADS  Google Scholar 

  10. Ladanyi, B.M. (2000). Mechanistic Studies of Solvation Dynamics in Liquids. In Theoretical Methods in Condensed Phase Chemistry, S.D. Schwartz, ed. (Dordrecht, the Netherlands: Kluwer), pp. 207–233.

    Google Scholar 

  11. Ladanyi, B.M., and Stratt, R.M. (1996). Short-Time Dynamics of Solvation: Relationship between Polar and Nonpolar Solvation. J. Phys. Chem. 100, 1266–1282.

    Article  Google Scholar 

  12. Ladanyi, B.M. (1997). Molecular mechanisms of solvation dynamics in polar and nonpolar liquids. In Electron Ion Transfer Condens. Media, A.A. Kornyshev, M. Tosi and J. Ulstrup, eds. (Singapore: World Scientific), pp. 110–129.

    Google Scholar 

  13. Ladanyi, B.M., and Maroncelli, M. (1998). Mechanisms of solvation dynamics of polyatomic solutes in polar and nondipolar solvents: A simulation study. J. Chem. Phys. 109, 3204–3221.

    Article  ADS  Google Scholar 

  14. Day, T.J.F., and Patey, G.N. (1997). Ion solvation dynamics in binary mixtures. J. Chem. Phys. 106, 2782–2791.

    Article  ADS  Google Scholar 

  15. Cichos, F., Willert, A., Rempel, U., and von Borczyskowski, C. (1997). Solvation Dynamics in Mixtures of Polar and Nonpolar Solvents. J. Phys. Chem. A 101, 8179–8185.

    Article  Google Scholar 

  16. Martins, L.R., Tamashiro, A., Laria, D., and Skaf, M.S. (2003). Solvation dynamics of coumarin 153 in dimethylsulfoxide-water mixtures: Molecular dynamics simulations. J. Chem. Phys. 118, 5955–5963.

    Article  ADS  Google Scholar 

  17. Yoshimori, A., Day, T.J.F., and Patey, G.N. (1998). An investigation of dynamical density functional theory for solvation in simple mixtures. J. Chem. Phys. 108, 6378–6386.

    Article  ADS  Google Scholar 

  18. Day, T.J.F., and Patey, G.N. (1999). Ion solvation dynamics in water-methanol and water- dimethylsulfoxide mixtures. J. Chem. Phys. 110, 10937–10944.

    Article  ADS  Google Scholar 

  19. Nishiyama, K., and Okada, T. (1998). Relaxation dynamics of inhomogeneous spectral width in binary solvents studied by transient hole-burning spectroscopy. J. Phys. Chem. A 102, 9729–9733.

    Article  Google Scholar 

  20. Laria, D., and Skaf, M.S. (1999). Solvation response of polar liquid mixtures: Waterdimethylsulfoxide. J. Chem. Phys. 111, 300–309.

    Article  ADS  Google Scholar 

  21. Cichos, F., Brown, R., Rempel, U., and Von Borczyskowski, C. (1999). Molecular dynamics simulations of the solvation of coumarin 153 in a mixture of an alkane and an alcohol. J. Phys. Chem. A 103, 2506–2512.

    Article  Google Scholar 

  22. Petrov, N.K., Wiessner, A., and Staerk, H. (1998). Transient dynamics of solvatochromic shift in binary solvents. J. Chem. Phys. 108, 2326–2330.

    Article  ADS  Google Scholar 

  23. Luther, B.M., Kimmel, J.R., and Levinger, N.E. (2002). Dynamics of polar solvation in acetonitrilebenzene binary mixtures: Role of dipolar and quadrupolar contributions to solvation. J. Chem. Phys. 116, 3370–3377.

    Article  ADS  Google Scholar 

  24. Ladanyi, B.M., and Perng, B.C. (2002). Solvation dynamics in dipolar-quadrupolar mixtures: A computer simulation study of dipole creation in mixtures of acetonitrile and benzene. J. Phys. Chem. A 106, 6922–6934.

    Article  Google Scholar 

  25. Suppan, P. (1987). Local Polarity of Solvent Mixtures in the Field of Electronically Excited Molecules and Exciplexes. J. Chem. Soc. Faraday Trans. I 83, 495–509.

    Article  Google Scholar 

  26. Suppan, P. (1988). Time-Resolved Luminescence Spectra of Dipolar Excited Molecules in Liquid and Solid Mixtures - Dynamics of Dielectric Enrichment and Microscopic Motions. Faraday Discussions, 173–184.

    Google Scholar 

  27. Khajehpour, M., and Kauffman, J.F. (2000). Dielectric enrichment of 1-(9-anthryl)-3-(4-N,N- dimethylaniline) propane in hexane-ethanol mixtures. J. Phys. Chem. A 104, 7151–7159.

    Article  Google Scholar 

  28. Khajehpour, M., Welch, C.M., Kleiner, K.A., and Kauffman, J.F. (2001). Separation of dielectric nonideality from preferential solvation in binary solvent systems: An experimental examination of the relationship between solvatochromism and local solvent composition around a dipolar solute. J. Phys. Chem. A 105, 5372–5379.

    Article  Google Scholar 

  29. Reichardt, C. (1988). Solvents and Solvent Effects in Organic Chemistry, 2nd Edition (New York: VCH).

    Google Scholar 

  30. Skaf, M.S., and Ladanyi, B.M. (1996). Molecular Dynamics Simulation of Solvation Dynamics in Methanol-Water Mixtures. J. Phys. Chem. 100, 18258–18268.

    Article  Google Scholar 

  31. Skaf, M.S., Borin, I.A., and Ladanyi, B.M. (1997). Simulation of solvation dynamics in H-bonding solvents: dynamics of solute-solvent H-bonds in methanol-water mixtures. Mol. Eng. 7, 457–472.

    Article  Google Scholar 

  32. Yoshimori, A., Day, T.J.F., and Patey, G.N. (1998). Theory of ion solvation dynamics in mixed dipolar solvents. J. Chem. Phys. 109, 3222–3231.

    Article  ADS  Google Scholar 

  33. Gardecki, J.A., and Maroncelli, M. (1999). Solvation and rotational dynamics in acetonitrile propylene carbonate mixtures: a binary system for use in dynamical solvent effect studies. Chem. Phys. Lett. 301, 571–578.

    Article  ADS  Google Scholar 

  34. Petrov, N.K., Wiessner, A., and Staerk, H. (2001). A simple kinetic model of preferential solvation in binary mixtures. Chem. Phys. Lett. 349, 517–520.

    Article  ADS  Google Scholar 

  35. Agmon, N. (2002). The dynamics of preferential solvation. Journal of Physical Chemistry A 106, 7256–7260.

    Article  Google Scholar 

  36. Bader, J.S., and Chandler, D. (1989). Computer simulation of photochemically induced electron transfer. Chem. Phys. Lett. 157, 501–504.

    Article  ADS  Google Scholar 

  37. Fonseca, T., and Ladanyi, B.M. (1991). Breakdown of linear response for solvation dynamics in methanol. J. Phys. Chem. 95, 2116–2119.

    Article  Google Scholar 

  38. Carter, E.A., and Hynes, J.T. (1991). Solvation dynamics of an ion pair in a polar solvent: Timedependent fluorescence and photochemical charge transfer. J. Chem. Phys. 94, 5961–5979.

    Article  ADS  Google Scholar 

  39. Horng, M.L., Gardecki, J.A., Papazyan, A., and Maroncelli, M. (1995). Subpicosecond Measurements of Polar Solvation Dynamics: Coumarin 153 Revisited. J. Phys. Chem. 99, 17311–17337.

    Article  Google Scholar 

  40. Ando, K., and Kato, S. (1991). Dielectric relaxation dynamics of water and methanol solutions associated with the ionization of N,N-dimethylaniline: theoretical analyses. J. Chem. Phys. 95, 5966–5982.

    Article  ADS  Google Scholar 

  41. Phelps, D.K., Weaver, M.J., and Ladanyi, B.M. (1993). Solvent dynamic effects in electron transfer: molecular dynamics simulations of reactions in methanol. Chem. Phys. 176, 575–588.

    Article  Google Scholar 

  42. Fonseca, T., and Ladanyi, B.M. (1994). Solvation dynamics in methanol: solute and perturbation dependence. J. Mol. Liq. 60, 1–24.

    Article  Google Scholar 

  43. Re, M., and Laria, D. (1997). Dynamics of Solvation in Supercritical Water. J. Phys. Chem. B 101, 10494–10505.

    Google Scholar 

  44. Aherne, D., Tran, V., and Schwartz, B.J. (2000). Nonlinear, Nonpolar Solvation Dynamics in Water: The Roles of Electrostriction and Solvent Translation in the Breakdown of Linear Response. J. Phys. Chem. B 104, 5382–5394.

    Google Scholar 

  45. Maroncelli, M., and Fleming, G.R. (1988). Computer simulation of the dynamics of aqueous solvation. J. Chem. Phys. 89, 5044–5069.

    Article  ADS  Google Scholar 

  46. Skaf, M.S., and Ladanyi, B.M. (1995). Computer simulation of solvation dynamics in hydrogenbonding liquids. THEOCHEM 335, 181–188.

    Article  Google Scholar 

  47. Luther, B.M. (2000). Ph. D. thesis, Colorado State University, Fort Collins, CO, U.S.A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ladanyi, B.M. (2004). Computer Simulation Studies of Solvation Dynamics in Mixtures. In: Samios, J., Durov, V.A. (eds) Novel Approaches to the Structure and Dynamics of Liquids: Experiments, Theories and Simulations. NATO Science Series, vol 133. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2384-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2384-2_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1847-3

  • Online ISBN: 978-1-4020-2384-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics