Advertisement

Visco-Elastic Behavior and Small Angle Scattering of Complex Fluids

  • H. Versmold
  • S. Musa
  • H. Kubetzki
Chapter
  • 202 Downloads
Part of the NATO Science Series book series (NAII, volume 133)

Abstract

In this contribution we investigate whether the structure of concentrated shear-ordered dispersions as determined by small angle synchrotron x-ray or neutron scattering can be rationalized in terms of viscoelastic flow behavior as in rheological investigations. Although so far scattering experiments have contributed little to the understanding of rheological systems we are convinced that rheological investigations will profit considerably from a better knowledge of the micro-structure of the dispersions. Sheared dispersions are usually ordered in layers. There are two kinds of ordering of interest: (a) The structure in a layer (b) The structure between the layers. One interesting point of mesogenic systems is their viscoelastic nature. There is strong evidence that the structure in a layer (a) can be treated as elastic or solid-like, whereas the structure (b) between the layers seems to be fluid-like. With scattering experiments one is in the excellent position that two experiments exist with which the two effects can be investigated separately: The solid-like microstructure (a) can be determined at perpendicular incidence. The fluid-like microstructure (b) is given by the scattering intensity along certain Bragg rods (3n±1-rods). In particular this second micro-structure may change in time by aging.

Keywords

Shear Rate Bragg Reflection Reciprocal Space Small Angle Scattering Couette Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Kittel, Introduction to Solid State Physics, Wiley, New York, 1967Google Scholar
  2. 2.
    A. Guiniers, X-Ray Diffraction, Freeman, London, 1963Google Scholar
  3. 3.
    N. H. Clark, A. J. Hurd and B. J. Ackerson, Nature, 281, 57 (1979)ADSCrossRefGoogle Scholar
  4. 4.
    Ch. Dux and H. Versmold, Physica A, 235, 75 (1997)ADSCrossRefGoogle Scholar
  5. 4.
    Ch. Dux and H. Versmold, Phys. Rev. Lett., 78, 1811 (1997)ADSCrossRefGoogle Scholar
  6. 5.
    V. Reus, L. Belloni, T. Zemb, N. Lutterbach and H. Versmold, J. Phys. II, France 7, 603 (1997)CrossRefGoogle Scholar
  7. 6.
    H. Versmold, S. Musa, and H. Kubetzki, and V. Urban, J. Chem. Phys., in preparationGoogle Scholar
  8. 7.
    L. B. Chen, C. F. Zukoski, B. J. Ackerson, H. J. M. Hanley, G. C. Straty, J. Baker andGoogle Scholar
  9. 8.
    C. J. Glinka, Phys. Rev. Lett. 69, 688 (1992)ADSCrossRefGoogle Scholar
  10. 9.
    H. Versmold, S. Musa and A. Bierbaum, J. Chem. Phys., 116, 2658 (2002)ADSCrossRefGoogle Scholar
  11. 10.
    H. Versmold and P. Lindner, Langmuir, 10, 3043 (1994)CrossRefGoogle Scholar
  12. 11.
    P. N. Pusey, Colloidal Suspensions, in “Liquides, Crystallization et Transition Vitreuse”, Les Houches 1989, Ed. J.P Hansen, D. Levesque et J. Zinn-Justin, Vol. II p. 763, North-Holland, 1991Google Scholar
  13. 12.
    B. J. Ackerson, J. B. Hayter, N. A. Clark and L. Cotter, J. Chem. Phys., 84, 2344 (1984)ADSCrossRefGoogle Scholar
  14. 13.
    S. Ashdown, I. Markovic, R. H. Ottewill, P. Lindner, R. C. Oberthür and A. R. Rennie, Langmuir, 6, 303 (1990)CrossRefGoogle Scholar
  15. 14.
    H. M. Laun, R. Bung, S. Hess, W. Loose, O. Hess, K. Hahn, E. Hädicke, R. Hingmann, F. F. Schmidt and P. Lindner, J. Rheol., 36, 743 (1992)ADSCrossRefGoogle Scholar
  16. 15.
    H. Versmold, S. Musa and Ch. Dux, P. Lindner and V. Urban, Langmuir, 17, 6812 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • H. Versmold
    • 1
  • S. Musa
    • 1
  • H. Kubetzki
    • 1
  1. 1.Institut für Physikalische Chemie der RWTHAachenGermany

Personalised recommendations