Advertisement

Novel Approaches in Spectroscopy of Interparticle Inter-Actions. Vibrational Line Profiles and Anomalous Non-Coincidence Effects

  • S. A. Kirillov
Chapter
Part of the NATO Science Series book series (NAII, volume 133)

Abstract

This chapter deals with the theories of vibrational line profiles and anomalous (negative) frequency non–coincidence effects in condensed media. First, a novel approach to the line profile analysis is described. It is based on a new, flexible time–correlation function (TCF), which has an analytical counterpart in the frequency domain. Using this function one can fit vibrational line profiles obtaining dynamical information at the same time. Numerous applications of this TCF are considered, including analyses of both line profiles and dynamics. Second, direct methods of estimation of repulsion contributions to frrequency shifts and non–coincidence effects are described, and model calculations enabling one to separate the contributions of repulsion and attraction forces resulting in frrequency non–coincidences are presented.

Keywords

Molten Salt Line Profile Spectral Shift Repulsion Force Probe Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bakhshiev, N.G. (1972) Spectroscopy of Intermolecular Interactions, Nauka, Leningrad.Google Scholar
  2. 2.
    Rothschild, W.G. (1984) Dynamics of Molecular Liquids, Wiley, New York.Google Scholar
  3. 3.
    Wang, C.H. (1985) Spectroscopy of Condensed Media. Dynamics of Molecular Interactions, Academic, Orlando.Google Scholar
  4. 4.
    Burshtein, A.I. and Temkin, S.I. (1994) Spectroscopy of Molecular Rotation in Gases and Liquids, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  5. 5.
    Gordon, R.G. (1968) Correlation functions for molecular motion, Adv. Magn. Res. 3, 1–42.Google Scholar
  6. 6.
    Oxtoby, D.W. (1979) Dephasing of molecular vibrations in liquids, Adv. Chem. Phys. 40, 1–48.CrossRefGoogle Scholar
  7. 7.
    Oxtoby, D.W. (1979) Vibrational relaxation in liquids, Annu. Rev. Chem. Phys. 32, 77–101.ADSCrossRefGoogle Scholar
  8. 8.
    Ivanov, E.N. and Valiev, K.A. (1973) Rotational Brownian motion, Usp. Fiz. Nauk 109, 31–64.CrossRefGoogle Scholar
  9. 9.
    Keller, B. and Kneubühl, F. (1972) Experimental angular correlation functions of molecules in liquids and in crystals, Heiv. Phys. Acta, 45, 1127–1164.Google Scholar
  10. 10.
    Birnbaum, G., Guillot, B., and Bratos, S. (1982) Theory of collision–induced line shapes — Absorption and light scattering at low densities, Adv. Chem. Phys. 51, 49–112.CrossRefGoogle Scholar
  11. 11.
    Borysow, A. and Frommhold, L. (1989) Collision-induced light scattering: a bibliography, Adv. Chem. Phys. 75, 439–505.CrossRefGoogle Scholar
  12. 12.
    Collision– and Interaction–Induced Spectroscopy (1995) NATO ASI Series C: Mathematical and Physical Sciences, Vol 452, Tabisz, G.C. and Neuman, M.N. (eds.), Kluwer, Dodrecht.Google Scholar
  13. 13.
    Jarwood, J. (1979) Spectroscopic studies of intermolecular forces in dense phases, Annu. Rep. Progr. Chem., Sect. C 76, 99–130; (1982)CrossRefGoogle Scholar
  14. 13a.
    Jarwood, J. (1979) Spectroscopic studies of intermolecular forces in dense phases, Annu. Rep. Progr. Chem., Sect. C ibid. 79, 157–197; (1987)Google Scholar
  15. 13b.
    Jarwood, J. (1979) Spectroscopic studies of intermolecular forces in dense phases, Annu. Rep. Progr. Chem., Sect. C ibid. 84, 155–199; (1990)Google Scholar
  16. 13c.
    Jarwood, J. (1979) Spectroscopic studies of intermolecular forces in dense phases, Annu. Rep. Progr. Chem., Sect. C ibid. 87, 75–118. (1990)Google Scholar
  17. 14.
    Faurskov Nielsen, O. (1993) Low-frrequency spectroscopic studies of interactions in liquids, Annu. Rep. Progr. Chem., Sect. C 90, 3–44.CrossRefGoogle Scholar
  18. 15.
    Faurskov Nielsen, O. (1996) Low-frrequency spectroscopic studies and intermolecular energy transfer in liquids Annu. Rep. Progr. Chem., Sect. C 93, 57–99.CrossRefGoogle Scholar
  19. 16.
    Kirillov, S.A. (1998) Interactions and picosecond dynamics in molten salts: a review with comparison to molecular liquids, J. Mol. Liq. 76, 35–95.CrossRefGoogle Scholar
  20. 17.
    Morresi, A., Paolantoni, M., and Sassi, P. (2000) The non-coincidence effect: a brief review of the structural and dynamical properties in liquid phase, Recent Res. Dev. Chem. Phys. 1, 67–87.Google Scholar
  21. 18.
    Bartoli, F.J. and Litovitz, T.A. (1972) Analysis of orientational broadening of Raman lines, J. Chem. Phys. 56, 404–412.ADSCrossRefGoogle Scholar
  22. 19.
    Bartoli, F.J. and Litovitz, T.A. (1972) Raman scattering: Orientational motion in liquids, J. Chem. Phys. 56, 413–425.ADSCrossRefGoogle Scholar
  23. 20.
    Boldeskul, A.E., Esman, S.S., and Pogorelov, V.E. (1974) Vibrational and rotational relaxation of molecules in several liquids on the basis of Raman spectra, Opt. Spectr. 37, 912–918.Google Scholar
  24. 21.
    Rothschild, W.G. (1976) Motional characteristics of large molecules from their Raman and infrared contours: vibrational dephasing, J. Chem. Phys. 65, 455–462.ADSCrossRefGoogle Scholar
  25. 22.
    Kubo, R. (1962) A stochastic theory of line-shape and relaxation, In Fluctuations, Relaxation and Resonance in Magnetic Systems, Scottish Universities’ Summer School 1961, ter Haar, G. (ed.), Oliver and Boyd, Edinburgh, p. 23–68.Google Scholar
  26. 23.
    Constant, M. and Fauquembergue, R. (1973) Raman scattering. I. Vibrational correlation in methyl iodide, J. Chem. Phys. 58, 4030–4033.ADSCrossRefGoogle Scholar
  27. 24.
    Tanabe, K. and Jonas, J. (1977) Raman study of vibrational relaxation in liquid benzene–d at high pressure, J. Chem. Phys. 67, 4222–4228.ADSCrossRefGoogle Scholar
  28. 25.
    Ricci, M., Bartolini, P., Chelli, R., Gardini, G., Califano, S., and Righini, R. (2001) The fast dynamics of benzene in the liquid phase. Part 1. Optical Kerr effect experimental investigation, Phys. Chem. Chem. Phys. 3, 2795–2802.CrossRefGoogle Scholar
  29. 26.
    Seshadri K.S. and Jones, R.N (1963) The shapes and intensities of infrared absorption bands, Spectrochim. Acta 19, 1013–1085.ADSCrossRefGoogle Scholar
  30. 27.
    Rothschild, W.G., Perrot, M., and Guillaume, F. (1986) Vibrational dephasing under fractional (“stretched”) exponential modulation, Chem. Phys. Lett. 128, 591–594.ADSCrossRefGoogle Scholar
  31. 28.
    Rothschild, W.G., Perrot, M., and Guillaume, F. (1987) On the vibrational T2 processes in partially ordered systems, J. Chem. Phys. 87, 7293–7299.ADSCrossRefGoogle Scholar
  32. 29.
    Kirillov, S.A. (1992) Fitting the stretched exponential model to experimental time correlation functions of vibrational dephasing, Chem. Phys. Lett. 200, 205–208.ADSCrossRefGoogle Scholar
  33. 30.
    Burshtein, A.I. (1981) Motion-broadened and motionally narrowed spectra, Chem. Phys. Lett. 83, 335–340.ADSCrossRefGoogle Scholar
  34. 31.
    Burshtein, A. I., Fedorenko, S. G., and Pusep, A. Yu. (1983) The lineshape of motion-averaged isotropic Raman spectra, Chem. Phys. Lett. 100, 155–158.ADSCrossRefGoogle Scholar
  35. 32.
    Fedorenko, S.G., Pusep, A.Yu., and Burshtein, A.I. (1987) The transformation of inhomogeneously broadened spectra due to frequency migration, Spectrochim. Acta A 43, 483–488.ADSCrossRefGoogle Scholar
  36. 33.
    Kirillov, S.A. and Kolomiyets, T.M. (1992) Repulsion forces in vibrational spectroscopy — II. Mutual effect of repulsion and attraction forces on the isotropic components of Raman line contours, with special reference to ionic systems, Spectrochim. Acta A 48, 867–871.ADSCrossRefGoogle Scholar
  37. 34.
    Kirillov, S.A. (1993) Markovian frequency modulation in liquids. Analytical description and comparison with the stretched exponential approach, Chem. Phys. Lett. 202, 459–463.ADSCrossRefGoogle Scholar
  38. 35.
    Kirillov, S.A. and Musiyenko, I.S. (1997) Estimation of the parameters of vibrational frequency modulation using generalized vibrational dephasing time correlation function, Khim. Fiz. (Russ.) 16, 30–34 [Chem. Phys. Reports 16, 1961–1966].Google Scholar
  39. 36.
    Kirillov, S.A. (1999) Time-correlation functions from band-shape fits without Fourier transform, Chem. Phys. Lett. 303, 37–42.ADSCrossRefGoogle Scholar
  40. 37.
    Egelstaff, P.A. and Schofield, P. (1962) On the evaluation of the thermal neutron scattering law, Nucl. Sci. Eng. 12, 260–270.Google Scholar
  41. 38.
    Bunten, R.A.J., McGreevy, R.L., Mitchell, E.W.J., Raptis, C., and Walker, P.J. (1984) Collective modes in molten alkaline-earth chlorides: I. Light Scattering, J. Phys. C: Solid State Phys. 17, 4705–4724.ADSCrossRefGoogle Scholar
  42. 39.
    Bunten, R.A.J., McGreevy, R.L., Mitchell, E.W.J., and Raptis, C. (1986) Collective modes in molten alkaline-earth bromides. Light Scattering, J. Phys. C: Solid State Phys. 19, 2925–2934.ADSCrossRefGoogle Scholar
  43. 40.
    Schofield, P. (1962) Neutron scattering and correlations in liquids, In Fluctuations, Relaxation and Resonance in Magnetic Systems, Scottish Universities’ Summer School 1961, ter Haar, G. (ed.), Oliver and Boyd, Edinburgh, p. 207–217.Google Scholar
  44. 41.
    Tanabe, K. and Hiraishi J. (1980) Truncation effect on the second moment of vibrational band, Spectrochim. Acta A 36, 828–838.Google Scholar
  45. 42.
    Kirillov, S.A. (1999) Spatial disorder and low-frrequency Raman pattern of amorphous solid, with special reference to quasi-elastic scattering and its relation to Boson peak, J. Mol. Struct. 479, 279–284.ADSCrossRefGoogle Scholar
  46. 43.
    Kirillov, S.A., Perova, T.S., Faurskov Nielsen, O., Praestgaard, E., Rasmussen, U., Kolomiyets, T.M., Voyiatzis, G.A., and Anastasiadis, S.H. (1999) Fitting the lowfrequency Raman spectra to Boson peak models: Glycerol, triacetin and polystyrene, J. Mol. Struct. 479, 271–277.ADSCrossRefGoogle Scholar
  47. 44.
    Kirillov, S.A. and Kolomiyets, T.M. (2001) Disorder in polymer blends studied by low-frrequency Raman spectroscopy, J. Phys. Chem. B 105, 3168–3173.CrossRefGoogle Scholar
  48. 45.
    Kirillov, S.A. and Yannopoulos, S.N. (2000) Charge-current contribution to lowfrrequency Raman scattering from glass–forming ionic liquids, Phys. Rev. B 61, 11391–11399.ADSCrossRefGoogle Scholar
  49. 46.
    Kirillov, S.A. and Faurskov Nielsen, O. (2000) Boson peak in the low-frrequency Raman spectra of ordinary liquids, J. Mol. Struct. 526, 317–321.ADSCrossRefGoogle Scholar
  50. 47.
    Kirillov, S.A. (2002) Dephasing of the y1vibration of isotopic molecules of carbon tetrachloride, J. Raman Spectr. 33, 155–159.ADSCrossRefGoogle Scholar
  51. 48.
    Kirillov, S.A., Voyiatzis, G.A., Musiyenko, I.S., Photiadis, G.M., and Pavlatou, E.A. (2001) Ionic interactions in molten halides from vibrational dephasing, J. Chem. Phys. 114, 3683–3691.ADSCrossRefGoogle Scholar
  52. 49.
    Kirillov, S.A. (1995) Purely discrete Markovian frequency modulation in molten alkali perchlorates, J. Mol. Struct. 349, 21–25.ADSCrossRefGoogle Scholar
  53. 50.
    Schroeder, J., Schiemann, V.H., Sharko, P.T., and Jonas, J. (1977) Raman study of vibrational dephasing in liquid CH3CN and CD3CN, J. Chem. Phys. 66, 3215–3226.ADSCrossRefGoogle Scholar
  54. 51.
    Nikiel, L., Hopkins, B., and Zerda, T.W. (1990) Rotational and vibrational relaxation of small molecules in porous silica gels, J. Phys. Chem. 94, 7458–7464.CrossRefGoogle Scholar
  55. 52.
    Westlund, P.-O. and Lynden-Bell, R.M. (1989) Separation of vibrational dephasing and reorientational contributions to the infrared and Raman lineshapes in a simulation of McCN, Chem. Phys. Lett. 154, 67–70.ADSCrossRefGoogle Scholar
  56. 53.
    Kirillov, S.A., Pavlatou, E.A., and Papatheodorou, G.N. (2002) Instantaneous collision complexes in molten alkali halides: Picosecond dynamics from low–frrequency Raman data, J. Chem. Phys. 116, 9341–9351.ADSCrossRefGoogle Scholar
  57. 54.
    Kirillov, S.A. (2003) Vibrational spectra of fused salts and dynamic criterion of complex formation in ionic liquids, J. Mol. Struct. accepted.Google Scholar
  58. 55.
    Kirillov, S.A. and Yannopoulos, S.N. (2002) Vibrational dynamics as an indicator of short-time interactions in glass–forming liquids and their possible relation to cooperativity, J. Chem. Phys. 117, 1220–1230.ADSCrossRefGoogle Scholar
  59. 56.
    Kalampounias, A.G., Kirillov, S.A., Steffen, W., and Yannopoulos, S.N. (2003) Raman spectra and microscopic dynamics of bulk and confined salol, J. Mol. Struct. accepted.Google Scholar
  60. 57.
    Kirillov, S.A., Voyiatzis, G.A., Andrikopoulos, K.S., and Yannopoulos, S.N. (2002) Interactions and picosecond dynamics in liquid benzene from Raman line profile analysis, in preparation.Google Scholar
  61. 58.
    Buchheim, W. (1935) Beeinflussung des Ramaneffektes von Flüssigkeiten durch zwischenmoleculare Wirkungen, Physik. Z. 36, 694–711.zbMATHGoogle Scholar
  62. 59.
    Wolkenstein, M.V. (1937) Ramaneffect and intermolecular interactions, Usp. Fiz. Nauk 18, 153–202.Google Scholar
  63. 60.
    Frenkel, Ya.A., (1946) Kinetic Theory of Liquids, Oxford University Press, Oxford, Ch. VIII,§ 1.zbMATHGoogle Scholar
  64. 61.
    Buckingham, A.D. (1958) Solvent effect in IR spectroscopy, Proc. Roy. Soc. A 248, 169–183.ADSCrossRefGoogle Scholar
  65. 62.
    Buckingham, A.D. (1960) Solvent effect in vibrational spectroscopy, Trans. Faraday Soc. 56.753–760.CrossRefGoogle Scholar
  66. 63.
    Sechkarev, A.V. (1965) On the possible reason of line shift and broadening in vibrational spectra of polar organic substances without hydrogen bonding, Opt. Spektr. 19, 721–730.Google Scholar
  67. 64.
    Bratos, S., Rios, J., and Guissani, Y. (1970) Infrared study of liquids. I. The theory of the IR spectra of diatomic molecules in inert solutions, J. Chem. Phys. 52, 439–453.ADSCrossRefGoogle Scholar
  68. 65.
    Perrot, M., Turrell, G., and Huong, P.V. (1970) Vibrational anharmonicity of HCl in solution, J. Mol. Spectr. 34, 47–52.ADSCrossRefGoogle Scholar
  69. 66.
    Rossi, I., Brodbeck, C., Bouanich, J.P., and Nguyen vanThan (1975) Etude theorique du displacement de frequence des molecules diatomique en solution liquide. Application a la frequence fondamentale des molecules HF, HCl, DCl, HBr, HJ, CO et NO en solution CCl4, Spectrochim. Acta A 31, 433–444.ADSCrossRefGoogle Scholar
  70. 67.
    Kolomiytsova, T.D., Melikova, S.M., and Shchepkin, D.N. (1975) Effect of intermolecular interactions on frequencies and anharmonicity constants, Opt. Spektr. 39, 602–604.Google Scholar
  71. 68.
    Martin, R., Quinard, J., Pahin, J.-P., and de Gasquet, B. (1978) Difusion Raman et Brillouin das nitrates monovalents (Li, Na, K, Rb, Cs, Tl, Ag), Rev. Chim. Minér. 15, 79–92.Google Scholar
  72. 69.
    Bulanin, M.O., Kolomiytsova, T.D., and Shchepkin, D.N. (1976) On the effect of intermolecular interactions on vibrational spectra of molecules, Opt. Spektr. 41, 201–213.Google Scholar
  73. 70.
    Kirillov, S.A. (1992) Repulsion forces in vibrational spectroscopy — I. Spectral shifts in vibrational spectra of condensed media caused by repulsion forces, Spectrochim. Acta A 48, 861–866.ADSCrossRefGoogle Scholar
  74. 71.
    Fini, G., Mirone, P. and Fortunato, B. (1973) Evidence of shortrange orientation effects in dipolar aprotic liquids from vibrational spectroscopy. Part I. — Ethylene and propylene carbonates, J. Chem. Soc. Faraday Trans. 2 69, 1243–1248.Google Scholar
  75. 72.
    Davydov, A.S. (1962) Theory of Molecular Excitons, Dower, London.Google Scholar
  76. 73.
    Döge, G. Moleculare Schwingungsexcitonen in Flüssigkeiten, Z. Naturforsch. A 28, 919–932.Google Scholar
  77. 74.
    Korsunskii, V.I., Lavrik, N.L., and Naberukhin Yu.I. (1976) Different positions of isotropic and anisotropic components of Raman scattering in liquids as evidence of intermolecular vibrational coupling, Opt. Spektr. 41.794–798.Google Scholar
  78. 75.
    Wang, C.H. and McHale, J. (1980) Vibrational resonance coupling and the noncoincidence effect of the isotropic and anisotropic Raman spectral components in orientationally anisometric molecular liquids, J. Chem. Phys. 72.4039–4044ADSCrossRefGoogle Scholar
  79. 76.
    McHale, J.L. (1981) The influence of angular dependent intermolecular forces on vibrational spectra of solution phase molecules, J. Chem. Phys. 75, 30–35.ADSCrossRefGoogle Scholar
  80. 77.
    Logan, D.E., (1986) On the isotropic Raman spectra of isotopic binary mixtures, Mol. Phys. 58, 97–129.ADSCrossRefGoogle Scholar
  81. 78.
    Logan, D.E., (1986) The non–coincidence effect in the Raman spectra of polar liquids, Chem. Phys. 103, 215–225.ADSCrossRefGoogle Scholar
  82. 79.
    Zerda, T.W., Thomas, H.D., Bradley, M., and Jonas, J. (1987) Highpressure isotropic band widths and frequency shifts of the C-H and C-O modes of liquid methanol, J. Chem. Phys. 86, 3219–3224.ADSCrossRefGoogle Scholar
  83. 80.
    Thomas, H.D. and Jonas, J. (1989) Hydrogen bonding and the Raman noncoincidence effect, J. Chem. Phys. 90, 4632–4633.ADSCrossRefGoogle Scholar
  84. 81.
    Hobza, P. and Havlas, Z. (1999) The fluoroform...ethylene oxide complex exhibits a C–H...0 anti–hydrogen bond, Chem. Phys. Lett. 303, 447–452.ADSCrossRefGoogle Scholar
  85. 82.
    Hermansson, K. (2002) Blueshifting hydrogen bonds, J. Phys. Chem. A 106, 4695–4702.CrossRefGoogle Scholar
  86. 83.
    Valiev, K.A. (1961) On the theory of dissipation of the energy of molecular vibrations energy in liquids, Zh. Eksp. Teor. Fiz. 40, 1832–1837.MathSciNetGoogle Scholar
  87. 84.
    Tokuhiro, T. and Rothschild, W.G. (1975) Resonance vibrational energy transfer in the repulsive potential region, J. Chem. Phys. 62, 2150–2154.ADSCrossRefGoogle Scholar
  88. 85.
    Oxtoby, D.W. (1979) Hydrodynamic theory of vibrational dephasing in liquids, J. Chem. Phys. 70, 2605–2610.ADSCrossRefGoogle Scholar
  89. 86.
    Sarka, K. (1980) Contribution of interatomic repulsion forces to the broadening of vibrational bands of planar XY3 molecules, Chem. Zvesti 34, 721–725.Google Scholar
  90. 87.
    Sarka, K. and Kirillov, S.A. (1980) Line broadening in vibrational spectra of liquids caused by repulsion forces, Ukr. Fiz. Zhurn. 25, 93–99.Google Scholar
  91. 88.
    Harmon, J.F. and Müller, B.H. (1969) Nuclear spin relaxation by translational diffusion in liquid ethane, Phys. Rev. 182, 400–410.ADSCrossRefGoogle Scholar
  92. 89.
    Brooker, M.H. and Papateodorou, G.N. (1983) Vibrational spectroscopy of molten salts and related glasses and vapors, Adv. Molten Salt Chem. 5, 26–184.Google Scholar
  93. 90.
    Lazarev, A.N., Mirgorodsky, A.P., and Ignatiev, I.S. (1985) Vibrational Spectra and Dynamics of Ionic–Covalent Crystals, Nauka, Leningrad.Google Scholar
  94. 91.
    Lazarev, A.N., Mirgorodsky, A.P., and Ignatiev, I.S. (1986) Vibrational spectra and dynamical properties of ionic-covalent crystals, Solid State Commun. 58, 371–377.ADSCrossRefGoogle Scholar
  95. 92.
    Tsiashchenko, Yu.P, Krasnianskii, G.E., and Verlan, E.M. (1978) Intermolecular interactions and Davydov splitting in vibrational spectra of ionic–covalent crystals, Fiz. Tverd. Tela 20, 864–870.Google Scholar
  96. 93.
    Tsiashchenko, Yu.P and Krasnianskii, G.E. (1979) Contribution of shortrange interactions to the Davydov splitting of vibrational levels in Scheelitetype crystals, Opt. Spektr. 47, 911–916.Google Scholar
  97. 94.
    Kirillov, S.A. and Voronin, B.M. (1974) Activation energies of orientational relaxation and conductivity in some molten nitratechloride mixtures, Teor. Eksp. Khim. 10, 390–392.Google Scholar
  98. 95.
    Korniakova, I.D., Khokhlov, V.A., Khaimenov, A.P., and Kochedykov, V.A. (1993) Micro- and macrodynamics properties of carbonateion in molten LiClLi2CO3 system, Rasplavy, # 5, 35–41.Google Scholar
  99. 96.
    Kirillov, S.A. (1993) Repulsion forces in vibrational spectroscopy — III. Anomalous frequency noncoincidence effect in strongly interacting liquids, with special reference to molten salts, J. Raman Spectr. 24, 167–172.ADSCrossRefGoogle Scholar
  100. 97.
    Meinander, N., Strube, M.M., Johnson, A.N., and Laane, J. (1987) Evidence for resonance intermolecular coupling in liquid benzene and pyridine from Raman difference spectroscopy of isotopic mixtures, J. Chem. Phys. 86, 4762–4767.ADSCrossRefGoogle Scholar
  101. 98.
    Döge, G., Schneider, D., and Morresi, A. (1993) The negative non-coincidence effect of ring vibrations, Mol. Phys. 80, 525–531.ADSCrossRefGoogle Scholar
  102. 99.
    Kamogawa, K. and Kitagawa, T. (1990) A new device for Raman difference spectroscopy and its application to observe frequency shifts due to isotope mixing, J. Phys. Chem. 94, 3916–3921.CrossRefGoogle Scholar
  103. 100.
    Morresi, A., Paolantoni, M., Sassi, P., Cataliotti, R.S., and Paliani, G. (2000) Noncoincidence effect of aromatic ring vibrations, J. Phys. Condens. Matter 12, 3631–3637.ADSCrossRefGoogle Scholar
  104. 101.
    Kirillov, S.A. (2003) Separation of non–coincidences caused by attraction and repulsion in molecular liquids, in preparation.Google Scholar
  105. 102.
    Fernández-Sanchez, J.M. and Montero, S. (1989) Gas phase Raman scattering cross sections of benzene and perdeuterated benzene, J. Chem. Phys. 90, 2909–2914.ADSCrossRefGoogle Scholar
  106. 103.
    Hatzis, G. and Samios, J. (2001) Estimation of the interaction-induced effects on the farinfrared and infrared correlation functions of HCl dissolved in CC14: a molecular dynamics study, J. Phys. Chem. A 105, 9522–9527.CrossRefGoogle Scholar
  107. 104.
    Medina, A., Roco, J.M.M., Calvo Hernández, A., and Velasco, S. (2003) Multipoleinduced dipole contributions to the FIR spectra of diatomic in non–polar solvents, this volume.Google Scholar
  108. 105.
    Torii, H. (2003) Intermolecular vibrational interaction and its manifestation in vibrational spectra, this volume.Google Scholar
  109. 106.
    Ribeiro, M.C.C., Wilson, M., and Madden, P. (1999) Raman scattering in the network liquid ZnCl2: relationship to the vibrational density of states, J. Chem. Phys. 110, 4803–4811.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • S. A. Kirillov
    • 1
    • 2
  1. 1.Institute for Sorption and Problems of EndoecologyUkrainian National Academy of SciencesKyiv - 142Ukraine
  2. 2.Institute for Technological and Information InnovationsKyiv - 134Ukraine

Personalised recommendations