Ultrasonically Induced Birefringence in Liquids and Solutions

  • H. Nomura
  • T. Matsuoka
  • S. Koda
Part of the NATO Science Series book series (NAII, volume 133)


The birefringence is induced in liquids and solutions containing certain amount of nonspherical molecules and particles as a result of the orientation of the molecules or particles due to longitudinal ultrasonic waves [1-23] This phenomenon was called as the ultrasonically induced birefringence. Early theoretical studies of the birefringence have been reviewed by Hilyard and Jerrard [1].


Isotropic Phase Wormlike Micelle Entanglement Network Ultrasonic Intensity Flow Birefringence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hilyard, N.C. and Jerrard, H.G. (1962) Theories of birefringence induced by ultrasonic waves, J. Appl. Phys. 33, 3470–3479.ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    Jerrard, H. G. (1964) Birefringence induced in liquids and solutions by ultrasonic waves, Ultrasonics 2, 74–81.CrossRefGoogle Scholar
  3. 3.
    Lipeles, R.and Kivelson, D. (1980) Experimental studies of acoustically induced birefringence, J. Chem. Phys. 72, 6199–6208.ADSCrossRefGoogle Scholar
  4. 4.
    Martinoty, P. and Bader, M. (1981) Measurement of the birefringence induced in liquids by ultrasonic-waves - Application to the study of the isotropic-phase of PAA near the transition point, J. Phys. (Paris), 42, 1097–1102.CrossRefGoogle Scholar
  5. 5.
    Bader, M. and Martinoty, P. (1981) Birefringence induced by ultrasonic-waves in the isotropic-phase of PCB, Mol. Cryst. Liq. Cryst.76, 269–277.CrossRefGoogle Scholar
  6. 6.
    Koda, S., Koyama, T., Enomoto, Y., and Nomura H. (1992) Study on orientational motion of liquid-crystals by acoustically induced birefringence, Jpn. J. Appl. Phys. 31 Supp1.31–1, 51–53.CrossRefGoogle Scholar
  7. 7.
    Matsuoka, T., Yasuda, K., Koda, S., and Nomura, H. (1999) On the frequency dependence of ultrasonically induced birefringence in isotropic phase of liquid crystal: 5CB (p-n-pentyl p’-cyanobiphenyl), J. Chem. Phys. 11, 1580–1586.ADSCrossRefGoogle Scholar
  8. 8.
    Ou-Yang, H.D., MacPhail, R.A., and Kivelson D. (1986) Nonlinear ultrasonically induced birefringence in gold sols: Frequency-dependent diffusion, Phys. Rev. A33, 611–619.ADSCrossRefGoogle Scholar
  9. 9.
    Yasuda, K., Matsuoka, T., Koda, S., and Nomura, H. (1994) Dynamics of V205 sol by measurement of ultrasonically induced birefringence, Jpn. J. Appl. Phys. 33, 2901–2904.ADSCrossRefGoogle Scholar
  10. 10.
    Yasuda, K., Matsuoka, T., Koda, S., and Nomura, H. (1996) Frequency dependence of ultrasonically induced birefringence of rodlike particles, J. Phys. Chem. 100, 5892–5897.CrossRefGoogle Scholar
  11. 11.
    Yasuda, K., Matsuoka, T., Koda, S., and Nomura, H. (1996) Dynamics of entanglement networks of rodlike micelles studied by measurements of ultrasonically induced birefringence, J. Phys. Chem. B 101, 1138–1141.CrossRefGoogle Scholar
  12. 12.
    Matsuoka, T., Yamamoto, K., Koda, S., and H. Nomura, in preparation.Google Scholar
  13. 13.
    Kawamura, H. (1937) Chouonpa no ba no hikari ni taisuru ichi kouka, Kagaku (Tokyo) 7, 6–7, 54–55 [in Japanese]Google Scholar
  14. 14.
    Kawamura, H. (1937) Chouonpaba ni okeru hikari no fukukussetsu, Kagaku (Tokyo) 7, 139 [in Japanese].Google Scholar
  15. 15.
    Oka S. (1939) Zur Theorie Doppelbrechunf bei nicht-Kugelförmingen Kolloiden in Ultraschallfelde Kolloid Z. 87, 37–43 [in German].CrossRefGoogle Scholar
  16. 16.
    Oka S. (1940) Zur Theorie de akustischen Doppelbechung von Kollidalen Lösungen, Z. Physik 116, 632–656 [in German].ADSCrossRefGoogle Scholar
  17. 17.
    Petralia, S. (1940) Sopra la birifrangenza provocata nei liquidi da ultrasuoni, Nuovo Cimento, 17, 378–389 [in Italian].CrossRefGoogle Scholar
  18. 18.
    Yasunaga, T., Tatsumoto, N., and Inoue, H. (1969) Birefringence induced in gold sol by ultrasonic wave, J. Colloid & Interface Sci. 29, 178–180.CrossRefGoogle Scholar
  19. 19.
    Watanabe, T., Ikeda, Y., Hibino, M., Kudo, T., Hosoda, M., Miyayama, M., Sakai, K. (2002) Ultrasonic and light scattering characterization of anisotropic colloidal particles in sol, Jpn. J. Appl. Phys. 41, 3157–3158.ADSCrossRefGoogle Scholar
  20. 20.
    Matsuoka, T., Koda, S., and Nomura, H. (2000) Linear and nonlinear ultrasonically induced birefringence in polymer solutions, Jpn. J. Appl. Phys. 39, 2902–2905.ADSCrossRefGoogle Scholar
  21. 21.
    Nomura, H., Ando, S., Matsuoka, T., and Koda, S. (2003) Effect of chain structure and molecular weight on ultrasonically induced birefringence, J. Mol. Liq., 103–104, 111–119.CrossRefGoogle Scholar
  22. 22.
    Nomura, H., Ando, S., Matsuoka, T., and Koda, S., Relationship between segmental anisotropy in polarizability and stationary ultrasonically induced birefringence in polymer solutions, J. Mol. Liq.,submitted.Google Scholar
  23. 23.
    Nomura, H., Matsuoka, T., and Koda, S. Ultrasonically induced birefringence in polymer solutions, Pure and Appl. Chem.,submitted.Google Scholar
  24. 24.
    Nomura, H., Matsuoka, T., and Koda, S. (2002) Translational-orientational coupling motion of molecules in liquids and solutions, J. Mol. Liq. 96–97, 135–151.CrossRefGoogle Scholar
  25. 25.
    Klein, W.R. and Cook, B. D. (1967) Unified Approach to Ultrasonic Light Diffraction, IEEE Trans. Sonics. Ultrason., SU-14, 123–134.CrossRefGoogle Scholar
  26. 26.
    De Gennes, P.G. and Prost, J. (1993) The Physics of Liquid Crystals2nd ed. Chap. 2, Clarendon, Oxford and references therein. SuGoogle Scholar
  27. 27.
    Berne, B. and Pecora R., (1976) Dynamic Light Scattering, Wiley, New York..Google Scholar
  28. 28.
    Kivelson, D. and Madden P.A. (1980) Light-scattering-studies of molecular liquids, Ann. Rev. Phys. Chem. 31, 523–558 and references therein.ADSCrossRefGoogle Scholar
  29. 29.
    Alms, G.R., Gierke, T. D., and Patterson G.D. (1977) Observation and analysis of depolarized Rayleigh doublet in isotropic MBBA and measurement of de Gennes viscosity coefficients, J. Chem. Phys., 67, 5779–5787.ADSCrossRefGoogle Scholar
  30. 30.
    Lipeles, R.and Kivelson, D. (1977) Theory of ultrasonically induced birefringence, J. Chem. Phys. 67, 4564–4570.ADSCrossRefGoogle Scholar
  31. 31.
    Martinoty., P., Kiry, F., Nagai. S., Candau, S., and Debeauvais, F. (1977) Viscosity coefficients in isotropic phase of a nematic liquid-crystal, J. Phys. (Paris) 38 159–162.CrossRefGoogle Scholar
  32. 32.
    Kivelson, D., Keyes, T., Champion, J. (1976) Theory of molecular-reorientation rates, flow birefringence, and depolarized light-scattering, Mol. Phys. 31, 221–232 .ADSCrossRefGoogle Scholar
  33. 33.
    Shibata, T., Matsuoka, T., Koda, S., and Nomura, H. (1998) Depolarized light scattering in the isotropic phase of liquid crystals, J. Chem. Phys. 109, 2038–2042 .ADSCrossRefGoogle Scholar
  34. 34.
    Hoffmann, H., Oetter, G., and Schwandner, B. (1987) The aggregation behavior of tretradecyldimetylaminoxide, Prog. Colloid Polym. Sci., 73, 95–106.CrossRefGoogle Scholar
  35. 35.
    Pilsl, H., Hoffmann, H., Hofmann, S., Kalus, J., Kencono, A.W., Lindner, P., and Ulbricht W. (1993) Shape investigation of mixed micelles by small-angle neutronscattering , J. Phys. Chem. 97, 2745–2754.CrossRefGoogle Scholar
  36. 36.
    Rehage, H. and Hoffmann, H. (1988) Rheological properties of viscoelastic surfactant systems, J. Phys. Chem. 92, 4712–4719.CrossRefGoogle Scholar
  37. 37.
    Hoffmann, H., Krämer, U., and Thurn H. (1990) Anomalous behavior of micellar solutions in electric birefringence measurements, J. Phys. Chem., 94, 2027–2033.CrossRefGoogle Scholar
  38. 38.
    Shikata, T.,. Dahman, S.J., and Pearson, D.S. (1994) Rheooptical behavior of wormlike micelles, Langmuir 10, 3470–3476.CrossRefGoogle Scholar
  39. 39.
    Hofmann, S., Rauscher, A., and Hoffmann, H. (1991) Shear induced micellar structures, Ber. Bunsenges. Phys. Chem. 95, 153–164.Google Scholar
  40. 40.
    Hu Y.T., Wang, S.Q., and Jamieson, A.M. (1993) Kinetic-studies of a shear thickening micellar solution, J. Colloid Interface Sci. 156, 31–37.CrossRefGoogle Scholar
  41. 41.
    King, L.V. (1935) On the acoustic radiation pressure on circular discs; inertia and diffraction corrections, Proc Roy. Soc. London A153, 1–16.ADSzbMATHCrossRefGoogle Scholar
  42. 42.
    King, L.V. (1935) On the theory of the inertia and diffraction correction for Rayleigh disc A153, 17–40.zbMATHGoogle Scholar
  43. 43.
    Rayleigh, J.W.S. (1945) Theory of Sound 2nd ed., Dover, New York.zbMATHGoogle Scholar
  44. 44.
    Peterlin, A. and Stuart, H.A. (1939) Über die Bestimmung der Größe und Form, sowie der elektrischen , optischen und magnetischen Anisotropie von submikroskopischen Teilchen mit Hilfe der künstlichen Doppelbrechung und der inneren Reibung, Z. Physik 112, 129–147 [in German].ADSCrossRefGoogle Scholar
  45. 45.
    Landau L.D., Lifshitz P.M. (1959) Fluid Mechanics, Pergamon Press, Oxford.Google Scholar
  46. 46.
    Lamb, S.H. (1932) Hydrodynamics 6th ed., Cambridge University Press, Cambridge.zbMATHGoogle Scholar
  47. 47.
    Perrin, F. (1934) Mouvement brownien d’un ellipsoide (I):dispersion dielectrique pour des molecules ellipsoidailes, J. Phys. Rad. (Paris) 5, 497–511 [in French].CrossRefGoogle Scholar
  48. 48.
    Perrin, F. (1936) Mouvement brownien d’un ellipsoide (II) : rotation libre et depolarisation des fluorescences. Tranclation et diffusion de molecules ellipsoidles, J. Phys. Rad. (Paris) 7, 1–11 [in French].CrossRefGoogle Scholar
  49. 49.
    Ozaki, M., Kratohvil, S., and Matijevic, E. (1984) Formation of monodispersed spindle-type hematite particles, J. Colloid Interface Sci. 102, 146–151.CrossRefGoogle Scholar
  50. 50.
    Platz, G., Thunig, C., and Hoffmann H. (1990) Iridescent phases in aminoxide surfactant solutions, Prog. Colloid Polym. Sci. 83. 167–175.CrossRefGoogle Scholar
  51. 51.
    Hashimoto, K. and Imae, T. (1991) Rheological properties of aqueous-solutions of alkyldimethylamine and oleyldimethylamine oxides - spinnability and viscoelasticity, Langmuir 7, 1734–1741.CrossRefGoogle Scholar
  52. 52.
    Shikata, T. and Kotaka, T. (1991) Entanglement network of thread-like micelles of a cationic detergent, J. Non-Crystalline Solids 131–133, 831–835.ADSCrossRefGoogle Scholar
  53. 53.
    Wheeler, E.K., Izu, P., and Fuller, G.G. (1996) Structure and rheology of wormlike micelles, Rheol. Acta 35, 139–149.CrossRefGoogle Scholar
  54. 54.
    Shikata, T., Hirata, H., Takatori E., and Osaki, K. (1988) Nonlinear viscoelastic behavior of aqueous detergent solutions, Non-Newtonian Fluid Mech. 28. 171–182.CrossRefGoogle Scholar
  55. 55.
    Peterlin, A. (1950) La biréfrringence acoustique des solutions Macromoléculaires, Rec. Tray. Chim. 69, 14–21 [in French].CrossRefGoogle Scholar
  56. 56.
    Larson, R.G. (1988) Constitutive Equations for Polymer Melts and Solutions, Butterworth, London.Google Scholar
  57. 57.
    Larson, R.G. (1999) The structure and Rheology of Complex Fluids, Oxford Univ. Press, New York.Google Scholar
  58. 58.
    Doi M. and Edwards, S.F. (1986) The Theory of polymer Dynamics, Clarendon Press, Oxford.Google Scholar
  59. 59.
    Tanaka, H., Sakanishi, A. and Kaneko, M. (1966) Dynamic viscoelastic properties of dilute polymer solutions, J. Polym. Sci. C15, 317–330.Google Scholar
  60. 60.
    Bailey, R.T., North, A.M., and Pethrick, R.A. (1981) Molecular Motion in High Polymers, Clarendon, Oxford.Google Scholar
  61. 61.
    Nomura, H., Kato, S., and Miyahara, Y. (1975) Ultrasonic absorption in polymer solutions, Mem. Fac. Eng. Nagoya Univ. 27 73–125.Google Scholar
  62. 62.
    Tsvetkov, V.N. (1965) Anisotropy of the segment and monomer units selected polymer molecules in Brandrup and E. H. Immergut (eds.), Polymer Handbook, Wiley, New York, pp.V-75–77.Google Scholar
  63. 63.
    Champion, J.V., Desson R.A. and Meeten, G. H. (1974) Conformation of polycarbonate by flow and magnetic birefringence, Polymer 15, 301–305.CrossRefGoogle Scholar
  64. 64.
    Champion, J.V., Meeten, G.H., and Southwell, G.W. (1976) Electro-optic Kerr birefringence of polystyrenes in dilute solutions, Polymer 17, 651–655.CrossRefGoogle Scholar
  65. 65.
    Inoue, T. and Osaki, K. (1996) Role of polymer chain flexibility on the viscoelasticity of amorphous polymers around the glass transition zone, Macromolecules 29, 1595–1599.ADSCrossRefGoogle Scholar
  66. 66.
    Inoue, T. and Osaki, K. (1996) Dynamic birefringence of vinyl polymers, Macromolecules 29, 6240–6245.ADSCrossRefGoogle Scholar
  67. 67.
    Stein , R.S. and Tobolsky, A.V. (1952) Determination of the statisitical segment size of polymer chains from stress-birefringence studies, J. Poly. Sci. 11, 285–288.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • H. Nomura
    • 1
  • T. Matsuoka
    • 2
  • S. Koda
    • 2
  1. 1.Laboratory of Chemistry, Department of Natural Science, School of Science and TechnologyTokyo Denki University, HatoyamaHiki-Gun, SaitamaJapan
  2. 2.Department of Molecular Design and Engineering, Graduate School of EngineeringNagoya UniversityFuro-cho, Chikusa-ku, NagoyaJapan

Personalised recommendations