Advertisement

Intermolecular Interactions and Cooperative Effects from Electronic Structure Calculations: An Effective Means for Developing Interaction Potentials for Condensed Phase Simulations

  • Sotiris S. Xantheas
Chapter
  • 202 Downloads
Part of the NATO Science Series book series (NAII, volume 133)

Abstract

The modeling of the macroscopic properties of homogeneous and inhomogeneous systems via atomistic simulations such as molecular dynamics (MD) or Monte Carlo (MC) techniques is based on the accurate description of the relevant solventsolute and solvent-solvent intermolecular interactions. The total energy (U) of an n-body molecular system can be formally written as [1,2,3]
$$ U = {U_{1 - body}} + {U_{2 - body}} + {U_{3 - body}} + \ldots + {U_{k - body}} + \ldots + {U_{n - body}} $$
(1)

Keywords

Monte Carlo Water Cluster Electronic Structure Calculation Molecular Constituent Electronic Structure Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. H. Stillinger, J. Chem. Phys. 57, 1780 (1972).ADSCrossRefGoogle Scholar
  2. 2.
    S. S. Xantheas, J. Chem. Phys. 100, 7523 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    G. Kaplan, R. Santamaria and O. Novaro, Mol. Phys. 84, 105 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    S. S. Xantheas, J. Chem. Phys. 104, 8821 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    S. S. Xantheas, J. Phys. Chem. 98, 13489 (1994);CrossRefGoogle Scholar
  6. 5a.
    S. S. Xantheas, J. Amer. Chem. Soc. 117, 10373 (1995).CrossRefGoogle Scholar
  7. 6.
    S. S. Xantheas and T. H. Dunning Jr., J. Chem. Phys. 99, 8774 (1993).ADSCrossRefGoogle Scholar
  8. 7.
    C. J. Burnham and S. S. Xantheas, M. A. Miller, B. E. Applegate and R. E. Miller, J. Chem. Phys. 117, 1109 (2002).ADSCrossRefGoogle Scholar
  9. 8.
    W. E. Thiessen and A. H. Narten, J. Chem. Phys. 77, 2656 (1982).ADSCrossRefGoogle Scholar
  10. 9.
    W. F. Kuhs and M. S. Lehman, J. Phys. Chem. 87, 4312 (1983).CrossRefGoogle Scholar
  11. 10.
    W. S. Benedict, N. Gailar, E. K. Plyler, J. Chem. Phys. 24, 1139 (1956).ADSCrossRefGoogle Scholar
  12. 11.
    V. Buch, J. P. Devlin, J. Chem. Phys. 110, 3437 (1999).ADSCrossRefGoogle Scholar
  13. 12.
    See for example A. Szabo and N. S. Ostlund, “Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory”, Revised Edition, Dover Publications Inc., Mineola, New York (1989).Google Scholar
  14. 13.
    C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).ADSzbMATHCrossRefGoogle Scholar
  15. 14.
    J. Cizek, J. Chem. Phys. 45, 4256 (1966);ADSCrossRefGoogle Scholar
  16. 14a.
    J. Cizek, Adv. Chem. Phys. 14, 35 (1969).CrossRefGoogle Scholar
  17. 15.
    T. H. Dunning Jr., K. A. Peterson, and T. van Mourik, in “Recent Theoretical and Experimental Advances in Hydrogen Bonded Clusters” NATO ASI Series C: Mathematical and Physical Sciences, Vol. 561, p. 45, S. S. Xantheas (ed.), Kluver Academic Publishers, Dordrecht (2000).CrossRefGoogle Scholar
  18. 16.
    S. S. Xantheas, C. J. Burnham and R. J. Harrison, J. Chem. Phys. 116, 1493 (2002).ADSCrossRefGoogle Scholar
  19. 17.
    K. A. Peterson and T. H. Dunning Jr., J. Chem. Phys. 102, 2032 (1995).ADSCrossRefGoogle Scholar
  20. 18.
    See for example J. Almlöf and P. R. Taylor, J. Chem. Phys. 86, 4070 (1987) and references therein.ADSCrossRefGoogle Scholar
  21. 19.
    T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989);ADSCrossRefGoogle Scholar
  22. 19a.
    R.A. Kendall, T.H. Dunning Jr. and R.J. Harrison, J. Chem. Phys. 96, 6769 (1992);CrossRefGoogle Scholar
  23. 19b.
    D.E. Woon and T.H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993);ADSCrossRefGoogle Scholar
  24. 19c.
    D.E. Woon and T.H. Dunning Jr., J. Chem. Phys. 100, 2975 (1994);ADSCrossRefGoogle Scholar
  25. 19d.
    D.E. Woon and T.H. Dunning Jr., J. Chem. Phys. 103, 4572 (1995);ADSCrossRefGoogle Scholar
  26. 19e.
    A. K. Wilson, T. van Mourik and T. H. Dunning Jr., J. Molec. Struct. (Theochem) 388, 339 (1996);Google Scholar
  27. 19f.
    T. H. Dunning Jr., K. A. Peterson, A. K. Wilson, J. Chem. Phys. 114, 9244 (2001);ADSCrossRefGoogle Scholar
  28. 19g.
    K. A. Peterson, T. H. Dunning Jr., J. Chem. Phys. 117, 10548 (2002).ADSCrossRefGoogle Scholar
  29. 20.
    D. Feller, J. Chem. Phys. 96, 6104 (1992).ADSCrossRefGoogle Scholar
  30. 21.
    T. H. Dunning Jr., J. Phys. Chem. A 104, 9062 (2000).CrossRefGoogle Scholar
  31. 22.
    B. Liu and A. D. McLean, J. Chem. Phys. 59, 4557 (1973).ADSCrossRefGoogle Scholar
  32. 23.
    S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).ADSCrossRefGoogle Scholar
  33. 24.
    C. F. Bunge, Theor. Chim. Acta 16, 126 (1970);CrossRefGoogle Scholar
  34. 24a.
    V. Termath, W. Klopper and W. Kutzelnigg, J. Chem. Phys. 94, 2002 (1991);ADSCrossRefGoogle Scholar
  35. 24b.
    W. Klopper, J. Chem. Phys. 102, 6168 (1995).ADSCrossRefGoogle Scholar
  36. 25.
    S. Huh, J. S. Lee, J. Chem. Phys. 118, 3035 (2003).ADSCrossRefGoogle Scholar
  37. 26.
    S. S. Xantheas, Chem. Phys. 258, 225 (2000).ADSCrossRefGoogle Scholar
  38. 27.
    G. Chalasinski, M. M. Szczesniak, C. Cieplak and S. Scheiner, J. Chem. Phys. 94, 2873 (1991).ADSCrossRefGoogle Scholar
  39. 28.
    S. S. Xantheas, Phil. Mag. B 73, 107 (1996).ADSCrossRefGoogle Scholar
  40. 29.
    W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, J. Chem. Phys. 79, 926 (1983).ADSCrossRefGoogle Scholar
  41. 30.
    M. Quack, J. Stohner, M. A. Shum, J. Mol. Struct. 294, 33 (1993);Google Scholar
  42. 30a.
    W. Klopper, M. Quack, M. A. Shum, Mol. Phys. 94, 105 (1998);Google Scholar
  43. 30b.
    M. Quack, J. Stohner, M. A. Suhm, J. Mol. Struct. 599, 381 (2001).ADSCrossRefGoogle Scholar
  44. 31.
    L. Dang and T.-M. Chang, J. Chem. Phys., 106, 8149 (1997).ADSCrossRefGoogle Scholar
  45. 32.
    E. R. Batista, S. S. Xantheas, H. Jonsson, J. Chem. Phvs. 109, 4546 (1998).ADSCrossRefGoogle Scholar
  46. 33.
    P. Ahlström, A. Wallqvist, S. Engström and B. Jöhnsson, Mol. Phys. 68, 563 (1989);ADSCrossRefGoogle Scholar
  47. 33a.
    M. Sprik, M. L. Klein, J. Chem. Phys. 89, 7556 (1988).ADSCrossRefGoogle Scholar
  48. 34.
    D. N. Bernardo, Y. Ding, K Krogh-Jespersen and R. M. Levy, J. Phys. Chem. 98, 4180 (1994).CrossRefGoogle Scholar
  49. 35.
    C. Millot and A. J. Stone, Mol. Phys. 77, 439 (1992);ADSCrossRefGoogle Scholar
  50. 35a.
    C. Millot, J-C Soetens, M. T. C. Martins Costa, M. P. Hodges, A. J. Stone, J. Phys. Chem. A, 102, 754 (1998).CrossRefGoogle Scholar
  51. 36.
    C. J. Burnham, J. C. Li, S. S. Xantheas, and M. Leslie, J. Chem. Phys. 110, 4566 (1999).ADSCrossRefGoogle Scholar
  52. 37.
    E. R. Batista, S. S. Xantheas, H. Jonsson, J. Chem. Phys. 111, 6011 (1999).ADSCrossRefGoogle Scholar
  53. 38.
    A. J. Stone and M. Alderton, Mol. Phys. 56, 1047 (1985).ADSCrossRefGoogle Scholar
  54. 39.
    B. Guillot, J. Mol. Liq. 101, 219 (2002).CrossRefGoogle Scholar
  55. 40.
    U. Niesar, G. Corongiu, E. Clementi, G. R. Kneller, D. K. Bhattacharya, J. Phys. Chem. 94, 7949 (1990).CrossRefGoogle Scholar
  56. 41.
    G. Corongiu, Int. J. Quant. Chem. 42, 1209 (1992).CrossRefGoogle Scholar
  57. 42.
    P. O. Astrand, P. Linse, G. Kalström, Chem. Phys. 191, 195 (1995);ADSCrossRefGoogle Scholar
  58. 42a.
    P.O. Astrand, A. Wallqvist, G. Kalström, J. Chem. Phys. 100, 1262 (1994).ADSCrossRefGoogle Scholar
  59. 43.
    B. T. Thole, Chem. Phys. 59, 341 (1981).ADSCrossRefGoogle Scholar
  60. 44.
    J. M. Pedulla and K. D. Jordan in “Recent Theoretical and Experimental Advances in Hydrogen Bonded Clusters” NATO ASI Series C: Mathematical and Physical Sciences, Vol. 561, p. 35, S. S. Xantheas (ed.), Kluver Academic Publishers, Dordrecht (2000).CrossRefGoogle Scholar
  61. 45.
    C. J. Burnham and S. S. Xantheas, J. Chem. Phys. 116, 1500 (2002).ADSCrossRefGoogle Scholar
  62. 46.
    C. J. Burnham and S. S. Xantheas, J. Chem. Phys. 116, 1479 (2002).ADSCrossRefGoogle Scholar
  63. 47.
    G. K. Schenter, J. Chem. Phys. 117, 6573 (2002).ADSCrossRefGoogle Scholar
  64. 48.
    C. J. Burnham and S. S. Xantheas, J. Chem. Phys. 116, 5115 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Sotiris S. Xantheas
    • 1
  1. 1.Chemical Sciences DivisionPacific Northwest National LaboratoryRichlandUSA

Personalised recommendations