Skip to main content

Agrobacterium-Mediated Genetic Transformation of Cotton

  • Chapter
Transgenic Crops of the World

Abstract

Cotton is the most important fibre crop of the world with an annual production of about 20 million metric tones from about 33.5 million hectares in 2002 (1). Cotton seed is also an important oilseed crop and is the world’s third largest in terms of global crushings from an annual production of about 33 million metric tonnes in 2002 and a source of high quality protein meal (2). The genus Gossypium, a member of the Malvaceae, contains 49 species distributed throughout most tropical and subtropical regions of the world (3). The most common commercially grown cotton varieties belong to four species of Gossypium — G. arboreum L., G. barbadense L., G. herbaceum L. and G. hirsutum L. Over 90% of the annual cotton crop in the world is produced from the upland cotton varieties of G. hirsutum. This species is generally thought to have a natural origin that involved the combining of genomes from plants related to extant diploid species from the Old World (A genome) and the New World (D genome). Diploid (2n = 2x = 26) species — G. arboreum and G. herbaceum (AA) are still being grown in the African and Asian continents whereas the allotetraploid (4n = 4x = 52) species — G. hirsutum and G. barbadense (AADD) are being grown worldwide. The largest cotton producers are China, USA and India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anon (2003). Cotton: Review of the World Situation. ICAC (International Cotton Advisory Committee), 56: 1–20.

    Google Scholar 

  2. Anon (2000). Oilseeds: World Production. Oil World Monthly, 43: 478.

    Google Scholar 

  3. Fryxell PA (1984). Taxonomy and Germplasm Resources. In: Kohel RJ, Lewis CF (eds.), Cotton (pp. 27–57). Madison, Wisconsin: American Society of Agronomy.

    Google Scholar 

  4. Jenkins JN (1993). Cotton. In: Traditional Crop Breeding Practices: An Historical Review to Serve as a Baseline for Assessing the Role of Modern Biotechnology (pp. 61–70). Paris: Organisation for Economic Co-operation and Development.

    Google Scholar 

  5. Robinson M, Jenkins JN and McCarty JC Jr (1997). Root-knot nematode resistance of F-2 cotton hybrids from crosses of resistant germplasm and commercial cultivars. Crop Science, 37: 1041–1046.

    Article  Google Scholar 

  6. James C (2002). Global Status of Commercialized Transgenic crops: 2002. ISAAA Briefs No. 27: Preview edn. Ithaca, NY: ISAAA.

    Google Scholar 

  7. Wilkins TA, Rajasekaran K and Anderson DM (2000). Cotton Biotechnology. Critical Review in Plant Science, 19: 511–550.

    Article  CAS  Google Scholar 

  8. Rajasekaran K, Chlan CA and Cleveland TE (2001). Tissue culture and genetic transformation of cotton. In: Jenkins JN, Saha S (eds.), Genetic Improvement of Cotton (pp. 269–290). Enfield, NH: Science Publishers, Inc.

    Google Scholar 

  9. Firoozabady E, DeBoer DL, Merlo DJ, Halk EL, Amerson LN, Rashka KE and Murray EE (1987). Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Molecular Biology, 10: 105–116.

    Article  CAS  Google Scholar 

  10. Umbeck P, Johnson G, Barton K and Swain W (1987). Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio/Technology, 5: 263–266.

    Article  CAS  Google Scholar 

  11. Van Haute E, Joos H, Maes S, Warren G, Van Montagu M and Schell J (1983). Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for reversed genetics of the Ti plasmids of Agrobacterium tumefaciens. The EMBO Journal, 2: 411–418.

    Google Scholar 

  12. Hofgen T and Willmitzer L (1988). Storage of competent cells for Agrobacterium transformation. Nucleic Acids Research, 16: 9877.

    Article  PubMed  CAS  Google Scholar 

  13. Murashige T and Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 15: 473–497.

    Article  CAS  Google Scholar 

  14. Singh M and Krikorian AD (1981). White’s standard nutrient solution. Annals of Botany, 47: 133–139.

    CAS  Google Scholar 

  15. Rajasekaran K, Grula JW, Hudspeth RL, Pofelis S and Anderson DM (1996). Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase. Molecular Breeding, 2: 307–319.

    Article  CAS  Google Scholar 

  16. Jefferson R (1987). Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reporter, 5: 387–405.

    Article  CAS  Google Scholar 

  17. Jefferson RA, Burgess SM and Hirsh D (1986). β-glucuronidase from Escherichia coli as a genefusion marker. Proceedings of the National Academy of Sciences USA, 83: 8447–8451.

    Article  CAS  Google Scholar 

  18. Rajasekaran K, Hudspeth RL, Cary JW, Anderson DM and Cleveland TE (2000). Highfrequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embryogenic cell suspension cultures. Plant Cell Reports, 19: 539–545.

    Article  CAS  Google Scholar 

  19. Rajasekaran K, Grula JW and Anderson DM (1996). Selection and characterization of mutant cotton (Gossypium hirsutum L.) cell lines resistant to sulfonylurea and imidazolinone herbicides. Plant Science, 119: 115–124.

    Article  CAS  Google Scholar 

  20. Trolinder NL and Goodin JR (1987). Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Reports, 6: 231–234.

    Article  CAS  Google Scholar 

  21. Rajasekaran K (1996). Regeneration of plants from cryopreserved embryogenic cell suspension and callus cultures of cotton (Gossypium hirsutum L.). Plant Cell Reports, 15: 859–864.

    Article  CAS  Google Scholar 

  22. Sunilkumar G and Rathore KS (2001). Transgenic cotton: factors influencing Agro bacteriummediated transformation and regeneration. Molecular Breeding, 8: 37–52.

    Article  CAS  Google Scholar 

  23. Sunilkumar G, Mohr L, Lopata-Finch E, Emani C and Rathore KS (2002). Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP. Plant Molecular Biology, 50: 463–474.

    Article  PubMed  CAS  Google Scholar 

  24. Kumria R, Sunnichan VG, Das DK, Gupta SK, Reddy VS, Bhatnagar RK and Leelavathi S (2003). High-frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum) through metabolic stress. Plant Cell Reports, 21: 635–639.

    PubMed  CAS  Google Scholar 

  25. Firoozabady E and DeBoer DL (1993). Plant regeneration via somatic embryogenesis in many cultivars of cotton (Gossypium hirsutum L.). In Vitro Cellular and Developmental Biology-Plant, 29: 166–173.

    Article  Google Scholar 

  26. Davidonis GH and Hamilton RH (1983). Plant regeneration from callus tissue of Gossypium hirsutum L. Plant Science Letters, 32: 89–93.

    Article  CAS  Google Scholar 

  27. Gawel NJ, Rao AP and Robacker CD (1986). Somatic embryogenesis from leaf and petiole callus cultures of Gossypium hirsutum L. Plant Cell Reports, 5: 457–459.

    Article  Google Scholar 

  28. Bayley C, Trolinder N, Ray C, Morgan M, Quisenberry JE and Ow DW (1992). Engineering 2,4D resistance into cotton. Theoretical and Applied Genetics, 83: 645–649.

    Article  CAS  Google Scholar 

  29. Rajasekaran K (2003). A rapid assay for gene expression in cotton cells transformed by oncogenic binary Agrobacterium strains. Journal of New Seeds, 5: 179–192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Rajasekaran, K. (2004). Agrobacterium-Mediated Genetic Transformation of Cotton. In: Curtis, I.S. (eds) Transgenic Crops of the World. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2333-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2333-0_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7021-3

  • Online ISBN: 978-1-4020-2333-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics