Agrobacterium-Mediated Genetic Transformation of Cotton

  • K. Rajasekaran

Abstract

Cotton is the most important fibre crop of the world with an annual production of about 20 million metric tones from about 33.5 million hectares in 2002 (1). Cotton seed is also an important oilseed crop and is the world’s third largest in terms of global crushings from an annual production of about 33 million metric tonnes in 2002 and a source of high quality protein meal (2). The genus Gossypium, a member of the Malvaceae, contains 49 species distributed throughout most tropical and subtropical regions of the world (3). The most common commercially grown cotton varieties belong to four species of Gossypium — G. arboreum L., G. barbadense L., G. herbaceum L. and G. hirsutum L. Over 90% of the annual cotton crop in the world is produced from the upland cotton varieties of G. hirsutum. This species is generally thought to have a natural origin that involved the combining of genomes from plants related to extant diploid species from the Old World (A genome) and the New World (D genome). Diploid (2n = 2x = 26) species — G. arboreum and G. herbaceum (AA) are still being grown in the African and Asian continents whereas the allotetraploid (4n = 4x = 52) species — G. hirsutum and G. barbadense (AADD) are being grown worldwide. The largest cotton producers are China, USA and India.

Keywords

Sucrose Income Chlorine Dehydration Kanamycin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anon (2003). Cotton: Review of the World Situation. ICAC (International Cotton Advisory Committee), 56: 1–20.Google Scholar
  2. 2.
    Anon (2000). Oilseeds: World Production. Oil World Monthly, 43: 478.Google Scholar
  3. 3.
    Fryxell PA (1984). Taxonomy and Germplasm Resources. In: Kohel RJ, Lewis CF (eds.), Cotton (pp. 27–57). Madison, Wisconsin: American Society of Agronomy.Google Scholar
  4. 4.
    Jenkins JN (1993). Cotton. In: Traditional Crop Breeding Practices: An Historical Review to Serve as a Baseline for Assessing the Role of Modern Biotechnology (pp. 61–70). Paris: Organisation for Economic Co-operation and Development.Google Scholar
  5. 5.
    Robinson M, Jenkins JN and McCarty JC Jr (1997). Root-knot nematode resistance of F-2 cotton hybrids from crosses of resistant germplasm and commercial cultivars. Crop Science, 37: 1041–1046.CrossRefGoogle Scholar
  6. 6.
    James C (2002). Global Status of Commercialized Transgenic crops: 2002. ISAAA Briefs No. 27: Preview edn. Ithaca, NY: ISAAA.Google Scholar
  7. 7.
    Wilkins TA, Rajasekaran K and Anderson DM (2000). Cotton Biotechnology. Critical Review in Plant Science, 19: 511–550.CrossRefGoogle Scholar
  8. 8.
    Rajasekaran K, Chlan CA and Cleveland TE (2001). Tissue culture and genetic transformation of cotton. In: Jenkins JN, Saha S (eds.), Genetic Improvement of Cotton (pp. 269–290). Enfield, NH: Science Publishers, Inc.Google Scholar
  9. 9.
    Firoozabady E, DeBoer DL, Merlo DJ, Halk EL, Amerson LN, Rashka KE and Murray EE (1987). Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Molecular Biology, 10: 105–116.CrossRefGoogle Scholar
  10. 10.
    Umbeck P, Johnson G, Barton K and Swain W (1987). Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio/Technology, 5: 263–266.CrossRefGoogle Scholar
  11. 11.
    Van Haute E, Joos H, Maes S, Warren G, Van Montagu M and Schell J (1983). Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for reversed genetics of the Ti plasmids of Agrobacterium tumefaciens. The EMBO Journal, 2: 411–418.Google Scholar
  12. 12.
    Hofgen T and Willmitzer L (1988). Storage of competent cells for Agrobacterium transformation. Nucleic Acids Research, 16: 9877.PubMedCrossRefGoogle Scholar
  13. 13.
    Murashige T and Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 15: 473–497.CrossRefGoogle Scholar
  14. 14.
    Singh M and Krikorian AD (1981). White’s standard nutrient solution. Annals of Botany, 47: 133–139.Google Scholar
  15. 15.
    Rajasekaran K, Grula JW, Hudspeth RL, Pofelis S and Anderson DM (1996). Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase. Molecular Breeding, 2: 307–319.CrossRefGoogle Scholar
  16. 16.
    Jefferson R (1987). Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reporter, 5: 387–405.CrossRefGoogle Scholar
  17. 17.
    Jefferson RA, Burgess SM and Hirsh D (1986). β-glucuronidase from Escherichia coli as a genefusion marker. Proceedings of the National Academy of Sciences USA, 83: 8447–8451.CrossRefGoogle Scholar
  18. 18.
    Rajasekaran K, Hudspeth RL, Cary JW, Anderson DM and Cleveland TE (2000). Highfrequency stable transformation of cotton (Gossypium hirsutum L.) by particle bombardment of embryogenic cell suspension cultures. Plant Cell Reports, 19: 539–545.CrossRefGoogle Scholar
  19. 19.
    Rajasekaran K, Grula JW and Anderson DM (1996). Selection and characterization of mutant cotton (Gossypium hirsutum L.) cell lines resistant to sulfonylurea and imidazolinone herbicides. Plant Science, 119: 115–124.CrossRefGoogle Scholar
  20. 20.
    Trolinder NL and Goodin JR (1987). Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Reports, 6: 231–234.CrossRefGoogle Scholar
  21. 21.
    Rajasekaran K (1996). Regeneration of plants from cryopreserved embryogenic cell suspension and callus cultures of cotton (Gossypium hirsutum L.). Plant Cell Reports, 15: 859–864.CrossRefGoogle Scholar
  22. 22.
    Sunilkumar G and Rathore KS (2001). Transgenic cotton: factors influencing Agro bacteriummediated transformation and regeneration. Molecular Breeding, 8: 37–52.CrossRefGoogle Scholar
  23. 23.
    Sunilkumar G, Mohr L, Lopata-Finch E, Emani C and Rathore KS (2002). Developmental and tissue-specific expression of CaMV 35S promoter in cotton as revealed by GFP. Plant Molecular Biology, 50: 463–474.PubMedCrossRefGoogle Scholar
  24. 24.
    Kumria R, Sunnichan VG, Das DK, Gupta SK, Reddy VS, Bhatnagar RK and Leelavathi S (2003). High-frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum) through metabolic stress. Plant Cell Reports, 21: 635–639.PubMedGoogle Scholar
  25. 25.
    Firoozabady E and DeBoer DL (1993). Plant regeneration via somatic embryogenesis in many cultivars of cotton (Gossypium hirsutum L.). In Vitro Cellular and Developmental Biology-Plant, 29: 166–173.CrossRefGoogle Scholar
  26. 26.
    Davidonis GH and Hamilton RH (1983). Plant regeneration from callus tissue of Gossypium hirsutum L. Plant Science Letters, 32: 89–93.CrossRefGoogle Scholar
  27. 27.
    Gawel NJ, Rao AP and Robacker CD (1986). Somatic embryogenesis from leaf and petiole callus cultures of Gossypium hirsutum L. Plant Cell Reports, 5: 457–459.CrossRefGoogle Scholar
  28. 28.
    Bayley C, Trolinder N, Ray C, Morgan M, Quisenberry JE and Ow DW (1992). Engineering 2,4D resistance into cotton. Theoretical and Applied Genetics, 83: 645–649.CrossRefGoogle Scholar
  29. 29.
    Rajasekaran K (2003). A rapid assay for gene expression in cotton cells transformed by oncogenic binary Agrobacterium strains. Journal of New Seeds, 5: 179–192.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • K. Rajasekaran
    • 1
  1. 1.Southern Regional Research CenterUSDA-ARSLouisianaUSA

Personalised recommendations