Skip to main content

Quartet Supertrees

  • Chapter
Phylogenetic Supertrees

Part of the book series: Computational Biology ((COBO,volume 4))

Abstract

We introduce two supertree methods that produce unrooted supertrees from unrooted input trees. The methods assemble supertrees from a weighted quartet (four-taxon) tree representation of the input trees. The first method, QLI, extends Willson ’s local inconsistency quartet method to construct supertrees. This method, which was designed originally to produce a tree from a taxon-character matrix, is not well suited for building accurate supertrees when there is little taxonomic overlap among the input trees. The second method, QILI, builds additionally on Willson ’s quartet-rectifying process and infers missing phylogenetic information from the input trees. We examined the effectiveness of the quartet-supertree methods using simulated and empirical data sets. These studies suggest that QILI is relatively accurate when compared with the matrix representation with parsimony (MRP) supertree method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bandelt, H.-J. and Dress, A. W. M. 1986. Reconstructing the shape of a tree from observed dissimilarity data. Advances in Applied Mathematics 7:309–343.

    Article  Google Scholar 

  • Baum, B. R. 1992. Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41:3–10.

    Article  Google Scholar 

  • Ben-Dor, A., Chor, B., Graur, D., Ophir, R., and Pelleg, D. 1998. Constructing phylogenies from quartets: elucidation of eutherian superordinal relationships. Journal of Computational Biology 5:377–390.

    Article  PubMed  CAS  Google Scholar 

  • Berry, V., Jiang, T., Kearney, P., Li, M., and Wareham, H. T. 1999. Quartet Cleaning: improved algorithms and simulations. In J. Nesetril (ed.), Algorithms — Esa ‘99: 7th Annual European Symposium, Prague, Czech Republic, July 1999, Lecture Notes in Computer Science 1643:313–324. Springer-Verlag, Berlin.

    Google Scholar 

  • Berry, V., Bryant, D., Jiang, T., Kearney, P., Li, M., Wareham, H. T., and Zhang, H. 2000. A practical algorithm for recovering the best supported edges of an evolutionary tree. In D. Shmoys (ed.), Symposium on Discrete Algorithms. Proceedings of the Eleventh Annual Acm-Siam Symposium on Discrete Algorithms, pp. 287–296. Society for Industrial and Applied Mathematics, Philadelphia, Pa.

    Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., and Purvis, A. 1999. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biological Reviews 74:143–175.

    Article  PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P. and Sanderson, M. J. 2001. An assessment of the accuracy of MRP supertree construction. Systematic Biology 50:565–579.

    Article  PubMed  CAS  Google Scholar 

  • Bryant, D. and Steel, M. A. 2001. Constructing optimal trees from quartets. Journal of Algorithms 38:237–259.

    Article  Google Scholar 

  • Burleigh, J. G., Eulenstein, O., Fernandez-Baca, D., and Sanderson, M. J. 2004. MRF supertrees. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 65–85. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Cao, Y., Adachi, J., and Hasegawa, M. 1998. Comment on the quartet puzzling method for finding maximum-likelihood tree topologies. Molecular Biology and Evolution 15:87–89.

    Article  CAS  Google Scholar 

  • Daubin, V., Gouy, M., and Perrière, G. 2002. A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Research 12:1080–1090.

    Article  PubMed  CAS  Google Scholar 

  • Della Vedova, G. and Wareham, H. T. 2002. Optimal algorithms for local vertex quartet cleaning. Bioinformatics 18:1297–1304.

    Article  PubMed  Google Scholar 

  • Erdös, P. L., Steel, M. A., Székely, L. A., and Warnow, T. J. 1999. A few logs suffice to build (almost) all trees (Part 1). Random Structures and Algorithms 14:153–184.

    Article  Google Scholar 

  • Eulenstein, O., Chen, D., Burleigh, J. G., Fernandez-Baca, D., and Sanderson, M. J. In press. Performance of flip-supertrees. Systematic Biology.

    Google Scholar 

  • Fitch, W. M. 1981. A non-sequential method of constructing trees and hierarchical classifications. Journal of Molecular Evolution 18:30–37.

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck, J. P., Ronquist, F., Nielsen, R., and Bollback, J. P. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, T., Kearney, P., and Li, M. 1998. Orchestrating quartets: approximation and data correction. In Proceedings, 39th Annual Symposium on Foundations of Computer Science: November 8–11, 1998, Palo Alto, California, pp. 416–425. Ieee Computer Society Press, Los Alamitos, California.

    Google Scholar 

  • Kennedy, M. and Page, R. D. M. 2002. Seabird supertrees: combining partial estimates of procellariiform phylogeny. The Auk 119:88–108.

    Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111–120.

    Article  PubMed  CAS  Google Scholar 

  • Liu, F.-G. R., Miyamoto, M. M., Freire, N. P., Ong, P. Q., Tennant, M. R., Young, T. S., and Gugel, K. F. 2001. Molecular and morphological supertrees for eutherian (placental) mammals. Science 291:1786–1789.

    Article  PubMed  CAS  Google Scholar 

  • Maddison, D. R., Swofford, D. L., and Maddison, W. P. 1997. Nexus: an extensible file format for systematic information. Systematic Biology 46:590–621.

    Article  PubMed  CAS  Google Scholar 

  • Maon, A. S. 2004. A molecular supertree of the Artiodactyla. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 411–437. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Page, R. D. M. 2002. Modified mincut supertrees. In R. Guigó and D. Gusfield (eds), Algorithms in Bioinformatics, Second International Workshop, Wabi 2002, Rome, Italy, September 17–21, 2002, Proceedings, pp. 537–552. Springer, Berlin.

    Google Scholar 

  • Pisani, D. and Wilkinson, M. 2002. Matrix representation with parsimony, taxonomic congruence, and total evidence. Systematic Biology 51:151–155.

    Article  PubMed  Google Scholar 

  • Ragan, M. A. 1992. Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution 1:53–58.

    Article  PubMed  CAS  Google Scholar 

  • Rambaut, A. and Grassly, N. C. 1997. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Computer Applications in the Biosciences 13:235–238.

    PubMed  CAS  Google Scholar 

  • Ranwez, V. and Gascuel, O. 2001. Quartet-based phylogenetic inference: improvements and limits. Molecular Biology and Evolution 18:1103–1116.

    Article  PubMed  CAS  Google Scholar 

  • Robinson-Rechavi, M. and Graur, D. 2001. USAge optimization of unevenly sampled data through the combination of quartet trees: an eutherian draft phylogeny based on 640 nuclear and mitochondrial proteins. Israel Journal of Zoology 47:259–270.

    Article  Google Scholar 

  • Ross, H. A. and Rodrigo, A. G. 2004. An assessment of matrix representation with compatibility in supertree construction. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 35–63. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Salamin, N., Hodkinson, T. R., and Savolainen, V. 2002. Building supertrees: an empirical assessment using the grass family (Poaceae). Systematic Biology 51:136–150.

    Article  PubMed  Google Scholar 

  • Sanderson, M. J. 2003. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301–302.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, M. J., Driskell, A. C., Ree, R. H., Eulenstein, O., and Langley, S. 2003. Obtaining maximal concatenated data sets from large sequence databases. Molecular Biology and Evolution 20:1036–1042.

    Article  PubMed  CAS  Google Scholar 

  • Semple, C., and Steel, M. A. 2003. Phylogenetics. Oxford University Press, Oxford.

    Google Scholar 

  • Steel, M. A. 1992. The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification 9:91–116.

    Article  Google Scholar 

  • Strimmer, K., Goldman, N., and Von Haeseler, A. 1996. Bayesian probabilities and quartet puzzling. Molecular Biology and Evolution 14:210–211.

    Article  Google Scholar 

  • Strimmer, K. and Von Haeseler, A. 1996. Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Molecular Biology and Evolution 13:964–969.

    Article  CAS  Google Scholar 

  • Swofford, D. L. 2002. Pa Up *. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version4. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Thorley, J. L. and Page, R. D. M. 2000. RadCon: phylogenetic tree comparison and consensus. Bioinformatics 16:486–487.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, M., Thorley, J. L., Pisani, D., Lapointe, F.J., and Mcinerney, J. O. 2004. Some desiderata for liberal supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 227–246. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Willson, S. J. 1999. Building phylogenetic trees from quartets by using local inconsistency measures. Molecular Biology and Evolution 16:685–693.

    Article  CAS  Google Scholar 

  • Willson, S. J. 2001. An error correcting map for quartets can improve the signals for phylogenetic trees. Molecular Biology and Evolution 18:344–351.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Piaggio-Talice, R., Burleigh, J.G., Eulenstein, O. (2004). Quartet Supertrees. In: Bininda-Emonds, O.R.P. (eds) Phylogenetic Supertrees. Computational Biology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2330-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2330-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2329-3

  • Online ISBN: 978-1-4020-2330-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics