Skip to main content

An Assessment of Matrix Representation with Compatibility in Supertree Construction

  • Chapter

Part of the book series: Computational Biology ((COBO,volume 4))

Abstract

Matrix representation with compatibility (MRC) identifies the largest set of mutually compatible characters (maximum clique) in combined data sets of trees represented by additive binary coding. The supertree can be determined directly from this clique, without recourse to arguments involving parsimony and homoplasy. We compared the powers of MRC and matrix representation with parsimony (MRP) to construct a supertree reliably by simulating sets of consistent and inconsistent sample trees derived from an original model tree. Under stringent definitions of success, MRC and MRP were successful with data sets having larger numbers of trees (>7–10), each with substantial overlap (>50% of all taxa). Overall, MRP was slightly more successful than MRC in recovering the original model tree. Identifying a maximum clique is subject to the NP-hard constraint so that fast computers and efficient software are needed for MRC to be a practical tool in the immediate future. Weakly compatible splits used in the construction of splits graphs might offer an alternative method and warrant further investigation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aho, A. V., Sagiv, Y., Szymanski, T. G., and Ullman, J. D. 1981. Inferring a tree from the lowest common ancestors with an application to the optimization of relational expressions. Siam Journal of Computing 10:405–421.

    Article  Google Scholar 

  • Bandelt, H.-J. and Dress, A. W. M. 1992a. A canonical decomposition theory for metrics on a finite set. Advances in Mathematics 92:47–105.

    Article  Google Scholar 

  • Bandelt, H.-J. and Dress, A. W. M. 1992b. Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Molecular Phylogenetics and Evolution 1:242–252.

    Article  CAS  Google Scholar 

  • Baum, B. R. 1992. Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41:3–10.

    Article  Google Scholar 

  • Baum, B. R. and Ragan, M. A. 2004. The MRP method. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 17–34. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Bininda-Emonds, O. R. P. and Bryant, H. N. 1998. Properties of matrix representation with parsimony analyses. Systematic Biology 47:497–508.

    PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., and Steel, M. A. 2002. The (super) tree of life: procedures, problems, and prospects. Annual Review of Ecology and Systematics 33:265–289.

    Article  Google Scholar 

  • Bininda-Emonds, O. R. P. and Sanderson, M. J. 2001. Assessment of the accuracy of matrix representation with parsimony analysis supertree construction. Systematic Biology 50:565–579.

    Article  PubMed  CAS  Google Scholar 

  • Bron, C. and Kerbosch, J. 1973. Algorithm 457: finding all cliques of an undirected graph. Communications of the Acm 16:575–577.

    Article  Google Scholar 

  • Burleigh, J. G., Eulenstein, O., Fernandez-Baca, D., and Sanderson, M. J. 2004. MRF supertrees. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 65–85. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Chen, D., Eulenstein, O., Fernandez-Baca, D., and Sanderson, M. J. 2001. Supertrees by Flipping. Technical Report TR02–01, Department of Computer Science, Iowa State University, 226 Atanasoff Hall, Ames, Ia 50011–1040, USA.

    Google Scholar 

  • Cotton, J. A. and Page, R. D. M. 2004. Tangled trees from molecular markers: reconciling conflict between phylogenies to build molecular supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 107–125. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Estabrook, G. F., Johnson, C. S., Jr., and McMorris, F. R. 1976. An algebraic analysis of cladistic characters. Discrete Mathematics 16:141–147.

    Article  Google Scholar 

  • Estabrook, G. F., Strauch, J. G., Jr., and Fiala, K. L. 1977. An application of compatibility analysis to the Blackiths ’ data on orthopteroid insects. Systematic Zoology 26:269–276.

    Article  Google Scholar 

  • Felsenstein, J. 1981. A likelihood approach to character weighting and what it tells us about parsimony and compatibility. Biological Journal of the Linnean Society 16:183–196.

    Article  Google Scholar 

  • Felsenstein, J. 1989. Phylip — Phylogeny Inference Package (Version 3.2). Cladistics 5:164–166. (http://evolution.genetics.washington.edu/phylip.html)

    Google Scholar 

  • Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, New York.

    Google Scholar 

  • Goloboff, P. A. and Pol, D. 2002. Semi-strict supertrees. Cladistics 18:514–525.

    Google Scholar 

  • Gordon, A. D. 1986. Consensus supertrees: the synthesis of rooted trees containing overlapping sets of labeled leaves. Journal of Classification 3:335–348.

    Article  Google Scholar 

  • Huson, D. H. 1998. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14:68–73.

    Article  PubMed  CAS  Google Scholar 

  • Meacham, C. A. and Estabrook, G. F. 1985. Compatibility methods in systematics. Annual Review of Ecology and Systematics 16:431–446.

    Article  Google Scholar 

  • Ostergard, P. R. J. 2002. A fast algorithm for the maximum clique problem. Discrete Applied Mathematics 120:197–207.

    Article  Google Scholar 

  • Pardalos, P. M. and Xue, J. 1994. The maximum clique problem. Journal of Global Optimization 4:301–328.

    Article  Google Scholar 

  • Purvis, A. 1995. A modification to Baum and Ragan ’s method for combining phylogenetic trees. Systematic Biology 44:251–255.

    Google Scholar 

  • Ragan, M. A. 1992. Phylogenetic inference based on matrix representations of trees. Molecular Phylogenetics and Evolution 1:53–58.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo, A. G. 1993. A comment on Baum ’s method for combining phylogenetic trees. Taxon 42:631–636.

    Article  Google Scholar 

  • Rodrigo, A. G. 1996. On combining cladograms. Taxon 45:267–274.

    Article  Google Scholar 

  • Sanderson, M. J., Purvis, A., and Henze, C. 1998. Phylogenetic supertrees: assembling the trees of life. Trends in Ecology and Evolution 13:105–109.

    Article  PubMed  CAS  Google Scholar 

  • Semple, C. and Steel, M. 2000. A supertree method for rooted trees. Discrete Applied Mathematics 105:147–158.

    Article  Google Scholar 

  • Semple, C. and Steel, M. 2002. Tree reconstruction from multi-state characters. Advances in Applied Mathematics 28:169–184.

    Article  Google Scholar 

  • Slowinski, J. B. and Page, R. D. M. 1999. How should species phylogenies be inferred from sequence data? Systematic Biology 48:814–825.

    Article  PubMed  CAS  Google Scholar 

  • Souris, P. and Souris, D. E. 2001. Molecular systematics: assembling and using the Tree of Life. Taxon 50:663–677.

    Article  Google Scholar 

  • Stajich, J. E., Block, D., Boulez, K., Brenner, S. E., Chervitz, S. A., Dagdigian, C., Fuellen, G., Gilbert, J. G. R., Korf, I., Lapp, H., Lehväslaiho, H., Matsalla, C., Mungall, C. J., Osborne, B. I., Pocock, M. R., Schattner, P., Senger, C. J., Stein, L. D., Stupka, E., Wilkinson, M. D., and Birney, E. 2002. The BioPerl toolkit: Perl modules for the life sciences. Genome Research 12:1611–1618.

    Article  PubMed  CAS  Google Scholar 

  • Steel, M., Dress, A. W. M., and Böcker, S. 2000. Simple but fundamental limitations on supertree and consensus tree methods. Systematic Biology 49:363–368.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D. L. 2002. Paup*: Phylogenetic Analysis Using Parsimony (* and Other Methods). Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Wilkinson, M. 1994. Common cladistic information and its consensus representation: reduced Adams and reduced cladistic consensus trees and profiles. Systematic Biology 43:343–368.

    Google Scholar 

  • Wilkinson, M., Thorley, J. L., Littlewood, D. T. J. and Bray, R. A. 2001. Towards a phylogenetic supertree of Platyhelminthes? In D. T. J. Littlewood and R. A. Bray (eds), Interrelationships of the Platyhelminthes, pp. 292–301. Taylor and Francis, London.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ross, H.A., Rodrigo, A.G. (2004). An Assessment of Matrix Representation with Compatibility in Supertree Construction. In: Bininda-Emonds, O.R.P. (eds) Phylogenetic Supertrees. Computational Biology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2330-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2330-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2329-3

  • Online ISBN: 978-1-4020-2330-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics