Skip to main content

A Molecular Supertree of the Artiodactyla

  • Chapter
Phylogenetic Supertrees

Part of the book series: Computational Biology ((COBO,volume 4))

Abstract

Despite the size of the order and the conservation importance of many of its members, no complete species-level phylogeny of extant artiodactyls (sensu stricto) exists. Matrix Representation with Parsimony, which has been used already in reconstructions of primate and carnivore phylogeny, was used to build a supertree of the order. Owing to a lack of data, only 171 of the 220 extant species could be included in the analysis. Forty-eight molecular source trees contributed to building a supertree, with a current (morphological) taxonomy used to provide a backbone. The resulting supertree largely reflects a consensus of recent molecular work; however, resolution of the tree varies across families reflecting areas of current uncertainty. A discussion of the structure of the tree, and of its possible limitations, is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • *Allard, M. W., Miyamoto, M. M., Jarecki, L., Kraus, F., and Tennant, M. R. 1992. DNA systematics and evolution of the artiodactyl family Bovidae. Proceedings of the National Academy of Sciences of the United States ofAmerica 89:3972–3976.

    Article  CAS  Google Scholar 

  • *Amato, G., Egan, M. G., and Schaller, G. B. 2000. Mitochondrial DNA variation in muntjac: evidence for discovery, rediscovery and phylogenetic relationships. In E. S. Vrba and G. B. Schaller (eds), Antelopes, Deer and Relatives: Fossil Record, Behavioural Ecology, Systematics and Conservation, pp. 287–295. Yale University Press, New Haven and London.

    Google Scholar 

  • Amato, G., Egan, M. G., Schaller, G. B., Baker, R. H., Rosenbaum, H. C., Robichaud, W. G., and Desalle, R. 1999. Rediscovery of Roosevelts ’s barking deer (Muntiacus rooseveltorum). Journal of Mammalogy 80:639–673.

    Article  Google Scholar 

  • Baum, B. R. 1992. Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 42:3–10.

    Article  Google Scholar 

  • Baum, B. R. and Ragan, M. A. 2004. The MRP method. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 17–34. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • *Beintema, J. J., Breukelman, H. J., Dubois, J.-Y. F., and Warmels, H. W. 2003. Phylogeny of ruminants secretory ribonuclease gene sequences of pronghorn (Antilocapra americana). Molecular Phylogenetics and Evolution 26:18–25.

    Article  PubMed  CAS  Google Scholar 

  • Beintema, J. J., Gaastra, W., and Munniksma, J. 1979. Primary structure of pronghorn pancreatic ribonuclease: close relationship between giraffe and pronghorn. Journal of Molecular Evolution 13:305–316.

    Article  PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P. and Bryant, H. N. 1998. Properties of matrix representation with parsimony analysis. Systematic Biology 47:497–508.

    PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., and Purvis, A. 1999. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biological Reviews 74:143–173.

    Article  PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., and Steel, M. A. 2002. The (super)tree of life: procedures, problems and prospects. Annual Review of Ecology and Systematics 33:265–289.

    Article  Google Scholar 

  • Bininda-Emonds, O. R. P., Jones, K. E., Price, S.A., Grenyer, M., Cardillo, M., Habib, A., Purvis, A., and Gittleman, J. L. 2003. Supertrees are a necessary not-so-evil: a comment on Gatesy et al. Systematic Biology 52:724–729.

    Article  PubMed  Google Scholar 

  • Bininda-Emonds, O. R. P., Jones, K. E., Price, S. A., Cardillo, M., Grenyer, R., and Purvis, A. 2004. Garbage in, garbage out: data issues in supertree construction. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 267–280. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Bininda-Emonds, O. R. P., and Sanderson, M. J. 2001. Assessment of the accuracy of matrix representation with parsimony analysis supertree construction. Systematic Biology 50:565–579.

    Article  PubMed  CAS  Google Scholar 

  • *Birungi, J. and Arctander, P. 2001. Molecular systematics and phylogeny of the Reduncini (Artiodactyla: Bovidae) inferred from the analysis of mitochondrial cytochrome b sequences. Journal of Mammalian Evolution 8:125–147.

    Article  Google Scholar 

  • Brashares, J. S., Garland, T. J., and Arcese, P. 2000. Phylogenetic analysis of coadaptation in behaviour, diet and body size in the African antelope. Behavioural Ecology 11:452–463.

    Article  Google Scholar 

  • Bremer, K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795–803.

    Article  CAS  Google Scholar 

  • Brooke, V. 1878. On the classification of the Cervidae, with a synopsis of the existing species. Proceedings of the zoological Society of London 1878:883–928.

    Google Scholar 

  • Chikuni, K., Mori, Y., Tabata, T., Saito, M., Monma, M., and Kosugiyama, M. 1995. Molecular phylogeny based on the kappa-casein and cytochrome b sequences in the mammalian suborder Ruminantia. Journal of Molecular Evolution 41:859–866.

    Article  PubMed  CAS  Google Scholar 

  • Cook, C. E., Wang, Y., and Sensabaugh, G. 1999. A mitochondrial control region and cytochrome b phylogeny of sika deer (Cervus nippon) and report of tandem repeats in the control region. Molecular Phylogenetics and Evolution 12:47–56.

    Article  PubMed  CAS  Google Scholar 

  • *Cronin, M. A., Stuart, R., Pierson, B. J., and Patton, J. C. 1996. K-casein gene phylogeny of higher ruminants (Pecora, Artiodactyla). Molecular Phylogenetics and Evolution 6:295–311.

    Article  PubMed  CAS  Google Scholar 

  • *Douzery, E. and Randi, E. 1997. The mitochondrial control region of Cervidae: evolutionary patterns and phylogenetic content. Molecular Biology and Evolution 14:1154–1166.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, J. F. 1981. The Mammalian Radiations. The Athlone Press, London.

    Google Scholar 

  • *Emerson, B. C. and Tate, M. L. 1993. Genetic analysis of evolutionary relationships among deer, (subfamily Cervinae). Journal of Heredity 84:266–273.

    PubMed  CAS  Google Scholar 

  • *Essop, F., Harley, E. H., and Baumgarten, I. 1997. A molecular phylogeny of some Bovidae based on restriction-site mapping of mitochondrial DNA. Journal of Mammalogy 78:377–386.

    Article  Google Scholar 

  • Forbes, W. A. 1882. Supplementary notes on the anatomy of the Chinese water-deer (Hydropotes inermis). Proceedings of the Zoological Society of London 636–638.

    Google Scholar 

  • Garrod, A. H. 1877. Notes on the anatomy of the Chinese water-deer (Hydropotes inermis). Proceedings of the Zoological Society of London 789–793.

    Google Scholar 

  • *Gatesy, J. 1998. Molecular evidence for the phylogenetic affinities of Cetacea. In J. G. M. Thewissen (ed.), The Emergence of Whales, pp. 63–111. Plenum Press, New York.

    Google Scholar 

  • Gatesy, J., Amato, G., Vrba, E., Schaller, G., and Desalle, R. 1997. A cladistic analysis of the mitochondrial ribosomal DNA from the Bovidae. Molecular Phylogenetics and Evolution 7:303–319.

    Article  PubMed  CAS  Google Scholar 

  • *Gatesy, J. and Arctander, P. 2000. Hidden morphological support for the phylogenetic placement of Pseudoryx ngetinhensis with bovine bovids: a combined analysis of gross anatomical evidence and DNA sequences from five genes. Systematic Biology 49:515–538.

    Article  PubMed  CAS  Google Scholar 

  • Gatesy, J., Hayashi, C., Cronin, M. A., and Arctander, P. 1996. Evidence from milk casein genes that cetaceans are close relatives of hippopotamid artiodactyls. Molecular Biology and Evolution 13:954–963.

    Article  PubMed  CAS  Google Scholar 

  • Gatesy, J., Matthee, C. A., Desalle, R., and Hayashi, C. 2002. Resolution of the supertree/supermatrix paradox. Systematic Biology 51:652–664.

    Article  PubMed  Google Scholar 

  • Gatesy, J. and Springer, M. S. 2004. A critique of matrix representation with parsimony supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 369–388. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Gatesy, J., Yelon, D., Desalle, R., and Vrba, E. S. 1992. Phylogeny of the Bovidae (Artiodactyla, Mammalia), based on mitochondrial ribosomal DNA sequences. Molecular Biology and Evolution 93:433–446.

    Google Scholar 

  • Gentry, A. W. 1978a. Bovidae. In V. J. Maglio and H. B. S. Cooke (eds), Evolution of African Mammals, pp. 540–572. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Gentry, A. W. 1978b. Tragulidae and Camelidae. In V. J. Maglio and H. B. S. Cooke (eds), Evolution of African Mammals, pp. 536–539. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Gentry, A. W. 1990. Evolution and dispersal of African Bovidae. In G. A. Bubenik and A. B. Bubenik (eds), Horns, Pronghorns and Antlers: Evolution, Morphology, Physiology and Social Significance, pp. 195–227. Springer Verlag, New York.

    Chapter  Google Scholar 

  • Gentry, A. W. 1992. The subfamilies and tribes of the family Bovidae. Mammal Review 22:1–32.

    Article  Google Scholar 

  • Gentry, A. W. and Hooker, J. J. 1988. The phylogeny of the Artiodactyla. In M. J. Benton (ed.) The Phylogeny and Classification of the Tetrapods, volume 2, pp. 235–277. Clarendon Press, Oxford.

    Google Scholar 

  • *Georgiadis, N. J., Kat, P. W., Oketch, H., and Patton, J. 1990. Allozyme divergences within the Bovidae. Evolution 44:2135–2149.

    Article  Google Scholar 

  • Gingerich, P. D., Wells, N. A., Russell, D. E., and Shah, S. M. I. 1983. Origin of whales in epicontinental remnant seas: new evidence from the early Eocene of Pakistan. Science 220:403–406.

    Article  PubMed  CAS  Google Scholar 

  • Graur, D. and Higgins, D. G. 1994. Molecular evidence for the inclusion of cetaceans within the order Artiodactyla. Molecular Biology and Evolution 11:357–364.

    PubMed  CAS  Google Scholar 

  • *Grobler, J. P. and Van Der Bank, F. H. 1995. Allozyme divergence among four representatives of the subfamily Alcepaphinae (family: Bovidae). Comparative Biochemistry and Physiology 112:303–308.

    Article  PubMed  CAS  Google Scholar 

  • Groves, C. P. 2000. Phylogenetic relationships with recent Antilopini (Bovidae). In E. S. Vrba and G. B. Schaller (eds), Antelopes, Deer and Relatives: Fossil Record, Behavioural Ecology, Systematics and Conservation, pp. 223–233. Yale University Press, New Haven.

    Google Scholar 

  • Groves, C. P. and Grubb, P. 1987. Relationships of living deer. In C. M. Wemmer (ed.), Biology and Management of the Cervidae, pp. 21–59. Smithsonian Institution Press, Washington. The Symposia of the National Zoological Park.

    Google Scholar 

  • *Groves, C.P. and Shields, G. F. 1996. Phylogenetics of the Caprinae based on cytochrome b sequence. Molecular Phylogenetics and Evolution 5:467–476.

    Article  PubMed  CAS  Google Scholar 

  • *Grubb, P. 1993. Order Artiodactyla. In D. E. Wilson and D. M. Reeder (eds), Mammal Species of the World: A Taxonomic and Geographic Reference, pp. 377–414. Smithsonian Institution Press, Washington.

    Google Scholar 

  • *Hartl, G. B., Burger, H., Willing, R. and Suchentrunk, F. 1990. On the biochemical systematics of the Caprini and Rupicaprini. Biochemical Systematics and Ecology 18:175–182.

    Article  CAS  Google Scholar 

  • *Hassanin, A. and Douzery, E. J. P. 1999a. Evolutionary affinities of the enigmatic saola (Pseudoryx nghetinhensis) in the context of the molecular phylogeny of Bovidae. Proceedings of the Royal Society of London Series B, Biological Sciences 266:893–900.

    Article  CAS  Google Scholar 

  • *Hassanin, A. and Douzery, E. J. P. 1999b. The tribal radiation of the family Bovidae (Artiodactyla) and the evolution of the mitochondrial cytochrome b gene. Molecular Phylogenetics and Evolution 13:227–243.

    Article  PubMed  CAS  Google Scholar 

  • *Hassanin, A. and Douzery, E. J. P. 2003. Molecular and morphological phylogenies of the Ruminantia and the alternative position of the Moschidae. Systematic Biology 52:206–228.

    Article  PubMed  Google Scholar 

  • *Hassanin, A., Pasquet, E., and Vigne, J.-D. 1998. Molecular systematics of the subfamily Caprinae (Artiodactyla, Bovidae) as determined from cytochrome b sequences. Journal of Mammalian Evolution 5:217–236.

    Article  Google Scholar 

  • Irwin, D. M. and Arnason, U. 1994. Cytochrome b gene of marine mammals: phylogeny and evolution. Journal of Mammalian Evolution 2:37–55.

    Article  Google Scholar 

  • Irwin, D. M., Kocher, T. D., and Wilson, A. C. 1991. Evolution of the cytochrome b gene of mammals. Journal of Molecular Evolution 32:128–144.

    Article  PubMed  CAS  Google Scholar 

  • *Janecek, L. L., Honeycutt, R. L., Adkins, R. M., and Davis, S. K. 1996. Mitochondrial gene sequences and the molecular systematics of the artiodactyl subfamily Bovinae. Molecular Phylogenetics and Evolution 6:107–119.

    Article  PubMed  CAS  Google Scholar 

  • Janis, C. M., Effinger, J. A., Harrison, J. A., Honey, J. G., Kron, D. G., Lander, B., Manning, E., Prothero, D. R., Stevens, M. S., Stucky, R. K., Webb, S. D., and Wright, D. B. 1998. Artiodactyla. In C. M. Janis, K. M. Scott and L. L. Jacobs (eds), Tertiary Mammals of North America, volume 1: Terrestrial Carnivores, Ungulates and Ungulatelike Mammals, pp. 337–357. Cambridge University Press, Cambridge.

    Google Scholar 

  • Jones, K. E., Purvis, A., Maclarnon, A., Bininda-Emonds, O. R. P., and Simmons, N. B. 2002. A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological Reviews 77:223–259.

    Article  PubMed  Google Scholar 

  • *Kleineidam, R. G., Pesole, G., Breukelman, H. J., Beintema, J. J., and Kastelein, R. A. 1999. Inclusion of cetaceans within the order Artiodactyla based on phylogenetic analysis of pancreatic ribonuclease genes. Journal of Molecular Evolution 48:360–368.

    Article  PubMed  CAS  Google Scholar 

  • Liu, F.-G. R., Miyamoto, M. M., Freire, N. P., Ong, P. Q., Tennant, M. R., Young, T. S., and Gugel, K. F. 2001. Molecular and morphological supertrees for eutherian (placental) mammals. Science 291:1786–1789.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, V. P. W. and Gardiner, A. S. 1989. Are the new and old world wapitis (Cervus canadensis) conspecific with red deer (Cervus elaphus)? Journal of Zoology, London 218:51–58.

    Article  Google Scholar 

  • *Madsen, O., Scally, M., Douady, C., Kao, D. J., Derby, R. W., Adkins, R. M., Amrine, H. M., Stanhope, M. J., De Jong, W. W., and Springer, M. S. 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature 409:610–614.

    Article  PubMed  CAS  Google Scholar 

  • *Matthee, C. A., Burzlaff, J. D., Taylor, J. F., and Davis, S. K. 2001. Mining the mammalian genome for artiodactyl systematics. Systematic Biology 50:367–390.

    Article  PubMed  CAS  Google Scholar 

  • *Matthee, C. A. and Robinson, T. J. 1999. Cytochrome b phylogeny of the family Bovidae: resolution within the Alcephini, Antilopini, Neotragini and Tragelaphini. Molecular Phylogenetics and Evolution 12:31–46.

    Article  PubMed  CAS  Google Scholar 

  • *Miyamoto, M. M., Kraus, F., and Ryder, O. A. 1990. Phylogeny and evolution of antlered deer determined from mitochondrial DNA sequences. Proceedings of the National Academy of Sciences of the United States ofAmerica 87:6127–6131.

    Article  CAS  Google Scholar 

  • *Miyamoto, M. M., Tanhauser, S. M., and Laipis, P. 1989. Systematic relationships in the artiodactyl tribe Bovini (family Bovidae), as determined from mitochondrial DNA sequences. Systematic Zoology 38:342–349.

    Article  Google Scholar 

  • Molina, M. and Molinari, J. 1998. Taxonomy of Venezuelan white-tailed deer (Odocoileus, Cervidae, Mammalia), based on cranial and mandibular traits. Canadian Journal of Zoology 77:632–645.

    Google Scholar 

  • *Montgelard, C., Ducrocq, S., and Douzery, E. 1998. What is a suiforme (Artiodactyla)? Contribution of cranioskeletal and mitochondrial DNA data. Molecular Phylogenetics and Evolution 9:528–532.

    Article  PubMed  CAS  Google Scholar 

  • *Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O’Brien, S. J. 2001. Molecular phylogenetics and the origins of placental mammals. Nature 409:614–618.

    Article  PubMed  CAS  Google Scholar 

  • *Nikaido, M., Rooney, A. P., and Okada, N. 1999. Phylogenetic relationships among cetartiodactyls based on insertions of short and long interspersed elements: hippotamuses are the closest extant relatives of whales. Proceedings of the National Academy of Sciences of the United States ofAmerica USA 96:10261–10266.

    Article  CAS  Google Scholar 

  • Nixon, K. C. 1999. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414.

    Article  Google Scholar 

  • O’Gara, B. W. and Matson, G. 1975. Growth and casting of horns by pronghorns and exfoliation of horns by bovids. Journal of Mammalogy 56:829–846.

    Article  PubMed  Google Scholar 

  • Page, R. D. M. 1996. TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12:357–358.

    PubMed  CAS  Google Scholar 

  • Pisani, D., Yates, A. M., Langer, M. C., and Benton, M. J. 2002. A genus-level supertree of the Dinosauria. Proceedings of the Royal Society of London Series B, Biological Sciences 269:915–921.

    Article  Google Scholar 

  • *Pitra, C., Fürbass, R., and Seyfert, H.-M. 1997. Molecular phylogeny of the tribe Bovini (Mammalia: Artiodactyla): alternative placement of the Anoa. Journal of Evolutionary Biology 10:589–600.

    Article  Google Scholar 

  • *Polziehn, R. O. and Strobeck, C. 1998. Phylogeny of wapiti, red deer, sika deer and other North American cervids as determined from mitochondrial DNA. Molecular Phylogenetics and Evolution 10:249–258.

    Article  PubMed  CAS  Google Scholar 

  • Prothero, D. R. 1993. Ungulate phylogeny: molecular vs. morphological evidence. In F. Szalay, M. J. Novacek and M. C. McKenna (eds), Mammal Phylogeny: Placentals, pp. 173–181. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Purvis, A. 1995. A composite estimate of primate phylogeny. Philosophical Transactions of the Royal Society London B 348:405–421.

    Article  CAS  Google Scholar 

  • Purvis, A. and Webster, A. J. 1999. Phylogenetically independent comparisons and primate phylogeny. In P. Lee (ed.), Comparative Primate Socioecology, pp. 44–69. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • Ragan, M. A. 1992. Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution 1:53–58.

    Article  PubMed  CAS  Google Scholar 

  • *Randi, E., Fusco, G., R.L., Tosco, S., and Tosi, G. 1991. Allozyme divergence and phylogenetic relationships among Capra, Ovis and Rupicapra (Artiodactyla, Bovidae). Heredity 67:281–286.

    Article  PubMed  Google Scholar 

  • *Randi, E., Lucchini, V., and Diong, C. H. 1996. Evolutionary genetics of the suiformes as reconstructed using mtDNA sequencing. Journal of Mammalian Evolution 3:163–194.

    Article  Google Scholar 

  • *Randi, E., Mucci, N., Pierpaoli, M., and Douzery, E. 1998. New phylogenetic perspectives on the Cervidae (Artiodactyla) are provided by the mitochondrial cytochrome b gene. Proceedings of the Royal Society of London Series B, Biological Sciences 265:793–801.

    Article  CAS  Google Scholar 

  • Robinson, T. J., Harrison, W. R., De Leon, F. A. P., Davis, S. K., and Elder, F. F. B. 1998. A molecular cytogenetic analysis of X chromosome repatterning in the Bovidae: transposition, inversion and phylogenetic inference. Cytogenetics and Cell Genetics 80:179–184.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, T. J., Wilson, V., Gallagher Jr., D. S., Taylor, J. F., Davis, S. K., Harrison, W. R., and Elder, F. F. B. 1996. Chromosomal evolution in duiker antelope (Cephalopinae: Bovidae): karyotype comparisons, fluorescence in situ hybridization and rampant X chromosome variation. Cytogenetics and Cell Genetics 73:116–122.

    Article  PubMed  CAS  Google Scholar 

  • Saether, B.-E. and Gordon, I. J. 1994. The adaptive significance of reproductive strategies in ungulates. Proceedings of the Royal Society of London Series B, Biological Sciences 256:263–268.

    Article  CAS  Google Scholar 

  • Sanderson, M. J., Purvis, A., and Henze, C. 1998. Phylogenetic supertrees: assembling the trees of life. Trends in Ecology and Evolution 13:105–109.

    Article  PubMed  CAS  Google Scholar 

  • Schaller, G. B. and Vrba, E. S. 1996. Description of the giant muntjac (Megamuntiacus vuquangensis) in Laos. Journal of Mammalogy 77:675–683.

    Article  Google Scholar 

  • *Schreiber, A., Seibold, I., Notzold, G., and Wink, M. 1999. Cytochrome b gene haplotypes characterize chromosomal lineages of Anoa, the Sulawesi dwarf buffalo. Journal ofHeredity 90:165–176.

    Article  CAS  Google Scholar 

  • Scott, K. M. and Janis, C. M. 1987. Phylogenetic relationships of the Cervidae and the case for a superfamily “Cervoidea”. In C. M. Wemmer (ed.), Biology and Management of the Cervidae, pp. 3–20. Smithsonian Institution Press, Washington.

    Google Scholar 

  • Shimamura, M., Yasue, H., Ohshima, K., Abe, H., Kato, H., Kishiro, T., Goto, M., Munechika, I., and Okada, N. 1997. Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 388:666–670.

    Article  PubMed  CAS  Google Scholar 

  • Shoshani, J and Mckenna, M. 1998. Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Molecular Phylogenetics and Evolution 9:572–584.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. R., SHivji, M. S., Waddell, V. G., and Stanhope, M. J. 1996. Phylogenetic evidence from the Irbp genes for the paraphyly of toothed whales, with mixed support for Cetacea as a suborder of Artiodactyla. Molecular Biology and Evolution 13:918–922.

    Article  PubMed  CAS  Google Scholar 

  • Springer, M. S. and De Jong, W. W. 2001. Which mammalian supertree to bark up? Science 291:1709–1711.

    Article  PubMed  CAS  Google Scholar 

  • *Stanley, H. F., Kadwell, M., and Wheeler, J. C. 1994. Molecular evolution of the family Camelidae: a mitochondrial DNA study. Proceedings of the Royal Society of London Series B, Biological Sciences 256:1–6.

    Article  CAS  Google Scholar 

  • *Su, B., Wang, Y.-X., H., Wang, W., and Zhang, Y. 1999. Phylogenetic study of complete cytochrome b genes in musk deer (genus Moschus) using museum samples. Molecular Phylogenetics and Evolution 12:241–249.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D. L. 2002. Pa Up *. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • * Theimer, T. C. and Keim, P. 1998. Phylogenetic relationships of peccaries based on mitochondrial cytochrome b DNA sequences. Journal of Mammalogy 79:566–572.

    Article  Google Scholar 

  • *Van Vuuren, B. J. and Robinson, T. J. 2001. Retrieval of four adaptive lineages in duiker antelopes: evidence from mitochondrial DNA sequences and fluorescence in situ hybridization. Molecular Phylogenetics and Evolution 20:409–425.

    Article  PubMed  CAS  Google Scholar 

  • *Vassart, M., SéguÉLa, A., and Hayes, H. 1995. Chromosomal evolution in gazelles. Journal of Heredity 86:216–227.

    PubMed  CAS  Google Scholar 

  • Vázquez, D. P. and Gittleman, J. L. 1998. Biodiversity conservation: does phylogeny matter? Current Biology 8:R379—R381.

    Article  Google Scholar 

  • *Wall, D. A., Davis, S. K. and Read, B. M. 1992. Phylogenetic relationships in the subfamily Bovinae (Mammalia: Artiodactyla) based on ribosomal DNA. Journal of Mammalogy 73:262–275.

    Article  Google Scholar 

  • *Wang, W. and Lan, H. 2000. Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial DNA phylogeny. Molecular Biology and Evolution 17:1326–1333.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, D. E. and Reeder, D. M. 1993. Mammal Species of the World: A Taxonomic and Geographic Reference. Smithsonian Institution Press, Washington.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mahon, A.S. (2004). A Molecular Supertree of the Artiodactyla. In: Bininda-Emonds, O.R.P. (eds) Phylogenetic Supertrees. Computational Biology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2330-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2330-9_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2329-3

  • Online ISBN: 978-1-4020-2330-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics