Skip to main content

Part of the book series: Computational Biology ((COBO,volume 4))

Abstract

Matrix representation with parsimony (MRP) is a supertree approach for analyzing multiple hierarchical trees, and through them multiple data sets, within a unified phylogenetic inference. Unlike consensus methods, it is based on nodes (subtrees) and not on full trees. This makes it possible to draw data sets with different but overlapping phyletic coverage into a common analysis. Our original method has provided a platform for subsequent modifications with respect to coding, weighting, transformations, and resolution of ambiguities and conflicts. Further extensions can be envisioned to improve not only performance in unified phylogenetic inference from large (e.g., genomic) and/or heterogeneous data sets, but also in the quantitative comparison of trees and subtrees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baum, B. R. 1990. Combining datasets for cladistic analysis. ICSEB IV, Fourth International Congress of Systematic and Evolutionary Biology. Program, p. 13; Abstracts. Affiliated Session: Nt-24. University of Maryland, USA. Unpaginated.

    Google Scholar 

  • Baum, B. R. 1992. Combining trees as a way of combining datasets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41:3–10.

    Article  Google Scholar 

  • Baum, B. R. and Ragan, M. A. 1993. Reply to A. G. Rodrigo ’s “A comment on Baum ’s method for combining phylogenetic trees”. Taxon 42:637–640.

    Article  Google Scholar 

  • Bininda-Emonds, O. R. P. and Bryant, H. N. 1998. Properties of matrix representation with parsimony analyses. Systematic Biology 47:497–508.

    PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., and Purvis, A. 1999. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biological Reviews 74:143–175.

    Article  PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., and Steel, M. A. 2002. The (super)tree of life: procedures, problems, and prospects. Annual Review of Ecology and Systematics 33:265–289.

    Article  Google Scholar 

  • Bininda-Emonds, O. R. P. and Sanderson, M. J. 2001. Assessment of the accuracy of matrix representation with parsimony analysis supertree construction. Systematic Biology 50:565–579.

    Article  PubMed  CAS  Google Scholar 

  • Böcker, S., Bryant, D., Dress, A. W. M., and Steel, M. A. 2000. Algorithmic aspects of tree amalgamation. Journal of Algorithms 37:522–537.

    Article  Google Scholar 

  • Brooks, D. R. 1981. Hennig ’s parasitological method: a proposed solution. Systematic Zoology 30:229–249.

    Article  Google Scholar 

  • Bull, J. J., Huelsenbeck, J. P., Cunningham, C. W., Swofford, D. L., and Waddell, P. J. 1993. Partitioning and combining data in phylogenetic analysis. Systematic Biology 42:384–397.

    Google Scholar 

  • Cannon, C. H. and Manos, P. S. 2001. The use of morphometric shape descriptors in relation to an independent molecular phylogeny: the case of fruit type evolution in Bornean Lithocarpus (Fagaceae). Systematic Biology 50:860–880.

    Article  PubMed  CAS  Google Scholar 

  • Constantinescu, M. and Sankoff, D. 1995. An efficient algorithm for supertrees. Journal of Classification 12:101–112.

    Article  Google Scholar 

  • Cotton, J. A. and Page, R. D. M. 2004. Tangled trees from molecular markers: reconciling conflict between phylogenies to build molecular supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 107–125. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Daubin, V., Gouy, M., and Perrière, G. 2001. Bacterial molecular phylogeny using supertree approach. Genome Informatics 12:155–164.

    PubMed  CAS  Google Scholar 

  • Daubin, V., Gouy, M., and Perrière, G. 2002. A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Research 12:1080–1090.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, W. F. 1999. Phylogenetic classification and the universal tree. Science 284:2124–2128.

    Article  PubMed  CAS  Google Scholar 

  • Doyle, J. J. 1992. Gene trees and species trees: molecular systematics as one-character taxonomy. Systematic Botany 17:144–163.

    Article  Google Scholar 

  • Farris, J. S. 1972. Abstract of compatibility clustering. Classification Society Bulletin 2:35.

    Google Scholar 

  • Farris, J. S. 1979. The information content of the phylogenetic system. Systematic Zoology 28:483–519.

    Article  Google Scholar 

  • Farris, J. S. 1989. The retention index and the rescaled consistency index. Cladistics 5:417–419.

    Article  Google Scholar 

  • Farris, J. S., Kluge, A. G., and Eckiardt, M. J. 1970. A numerical approach to phylogenetic systematics. Systematic Zoology 19:172–191.

    Article  Google Scholar 

  • Galtier, N. and Gouy, M. 1994. Molecular phylogeny of Eubacteria:a new multiple tree analysis method applied to 15 sequence data sets questions the monophyly of Grampositive bacteria. Research in Microbiology 145:531–541.

    Article  PubMed  CAS  Google Scholar 

  • Gatesy, J., Mattee, C., Desalle, R., and Hayashi, C. 2002. Resolution of a supertree / supermatrix paradox. Systematic Biology 51:652–664.

    Article  PubMed  Google Scholar 

  • Gittleman, J. L., Jones, K. E., and Price, S. A. 2004. Supertrees: using complete phylogenies in comparative biology. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 439–460. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Gogarten, J. P., Doolittle, W. F., and Lawrence, J. G. 2002. Prokaryotic evolution in light of gene transfer. Molecular Biology and Evolution 19:2226–2238.

    Article  PubMed  CAS  Google Scholar 

  • Goloboff, P. A. and Pol, D. 2002. Semi-strict supertrees. Cladistics 18:514–525.

    Google Scholar 

  • Gordon, A. D. 1986. Consensus supertrees: the synthesis of rooted trees containing overlapping sets of labeled leaves. Journal of Classification 3:335–348.

    Article  Google Scholar 

  • Huelsenbeck, J. P. and Ronquist, F. 2001. Mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755.

    Article  PubMed  CAS  Google Scholar 

  • Jones, K. E., Purvis, A., Maclarnon, A., Bininda-Emonds, O. R. P., and Simmons, N. B. 2002. A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological Reviews 77:223–259.

    Article  PubMed  Google Scholar 

  • Kellogg, E. A., Appels, R., and Mason-Gamer, R. J. 1996. When genes tell different stories: the diploid genera of Triticeae (Gramineae). Systematic Botany 21:321–347.

    Article  Google Scholar 

  • Kennedy, M. and Page, R. D. M. 2002. Seabird supertrees: combining partial estimates of procellariiform phylogeny. The Auk 119:88–108.

    Google Scholar 

  • Kluge, A. G. 1983. Cladistics and the classification of the great apes. In R. L. Ciochon and R. S. Corruccini (eds), New Interpretations of Ape and Human Ancestry, pp. 151–177. Plenum, New York, Ny.

    Chapter  Google Scholar 

  • Kluge, A. G. 1989. A concern for evidence and a phylogenetics hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Zoology 3 8:7–25.

    Article  Google Scholar 

  • Liu, F.-G. R., Miyamoto, M. M., Freire, N. P., Ong, P. Q., Tennant, M. R., Young, T. S., and Gugel, K. F. 2001. Molecular and morphological supertrees for eutherian (placental) mammals. Science 291:1786–1789.

    Article  PubMed  CAS  Google Scholar 

  • Mahon, A. S. 2004. A molecular supertree of the Artiodactyla. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 411–437. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • McLean, P. E. and Hanson, M. R. 1986. Mitochondrial DNA sequence divergence among Lycopersicon and related Solanum species. Genetics 112:649–667.

    Google Scholar 

  • McMorris, F. R. 1985. Axioms for consensus functions on undirected phylogenetic trees. Mathematical Biosciences 74:17–21.

    Article  Google Scholar 

  • Moore, B. R., Chan, K. M. A., and Donoghue, M. J. 2004. Detecting diversification rate variation in supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 487–533. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Morand, S. and Müller-Graf, C. D. M. 2000. Muscles or testes? Comparative evidence for sexual competition among dioecious blood parasites (Schistosomatidae) of vertebrates. Parasitology 120:45–56.

    Article  PubMed  Google Scholar 

  • Novacek, M. J. 2001. Mammalian phylogeny: genes and supertrees. Current Biology 11:R573-R575.

    Article  PubMed  CAS  Google Scholar 

  • Page, R. D. M. and Charleston, M. A. 1997. From gene to organismal phylogeny: reconciled trees and the gene tree / species tree problem. Molecular Phylogenetics and Evolution 7:231–240.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J. D. and Zam I. R. D. 1982. Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proceedings of the National Academy of Sciences of the United States of America 79:5006–5010.

    Article  PubMed  CAS  Google Scholar 

  • Piaggio-Talice, R., Burleigh, J. G., and Eulenstein, O. 2004. Quartet supertrees. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 173–191. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Pisani, D., Yates, A. M., Langer, M. C., and Benton, M. J. 2002. A genus-level supertree of the Dinosauria. Proceedings of the Royal Society of London Series B, Biological Sciences 269:915–921.

    Article  Google Scholar 

  • Plunkett, G. M. 2001. Relationship of the order Apiales to subclass Asteridae: a reevaluation of morphological characters based on insights from molecular data. Edinburgh Journal of Botany 58:183–200.

    Article  Google Scholar 

  • Purvis, A. 1995a. A modification to Baum and Ragan ’s method for combining phylogenetic trees. Systematic Biology 44:251–255.

    Google Scholar 

  • Purvis, A. 1995b. A composite estimate of primate phylogeny. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 348:405–421.

    Article  CAS  Google Scholar 

  • Purvis, A. and Webster, A. J. 1999. Phylogenetically independent comparisons and primate phylogeny. In P. C. Lee (ed.), Comparative Primate Socioecology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ragan, M. A. 1991. A hybrid phylogenetics based on matrix representation of trees. Programme, Fifth Annual Meeting, Canadian Institute for Advanced Research, Program in Evolutionary Biology, Lac Delage, Québec, 10–14 August 1991. Unpaginated.

    Google Scholar 

  • Ragan, M. A. 1992a. Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution 1:53–58.

    Article  CAS  Google Scholar 

  • Ragan, M. A. 1992b. Matrix representation in reconstructing phylogenetic relationships among the eukaryotes. Bio Systems 28:47–55.

    Article  CAS  Google Scholar 

  • Ragan, M. A. 2001. Detection of lateral gene transfer among microbial genomes. Current Opinion in Genetics and Development 11:620–626.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo, A. G. 1993. A comment on Baum ’s method for combining phylogenetic trees. Taxon 42:631–636.

    Article  Google Scholar 

  • Rodrigo, A. G. 1996. On combining cladograms. Taxon 45:267–274.

    Article  Google Scholar 

  • Ronquist, F. 1996. Matrix representation of trees, redundancy, and weighting. Systematic Biology 45:247–253.

    Article  Google Scholar 

  • Ronquist, F., Huelsenbeck, J. P., and Britton, T. 2004. Bayesian supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 193–224. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Roshan, U., Moret, B. M. E., Williams, T. L., and Warnow, T. 2004. Performance of supertree methods on various data set decompositions. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 301–328. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Ross, H. A. and Rodrigo, A. G. 2004. An assessment of matrix representation with compatibility in supertree construction. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 35–63. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Salamin, N., Hodkinson, T. R., and Savolainen, V. 2002. Building supertrees: an empirical assessment using the grass family (Poaceae). Systematic Biology 51:112–126.

    Article  Google Scholar 

  • Sanderson, M. J. 2003. Rés: inferring absolute rates of molecular evolution and divergence times in the absences of a molecular clock. Bioinformatics 19:301–302.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, M. J., Purvis, A., and Henze, C. 1998. Phylogenetic supertrees: assembling the trees of life. Trends in Ecology and Evolution 13:105–109.

    Article  PubMed  CAS  Google Scholar 

  • Semple, C. and Steel, M. 2000. A supertree method for rooted trees. Discrete Applied Mathematics 105:147–158.

    Article  Google Scholar 

  • Soltis, D. E. and Kuzoff, R. K. 1995. Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae). Evolution 49:727–742.

    Article  Google Scholar 

  • Steel, M., Dress, A. W. M., and Böcker, S. 2000. Simple but fundamental limitations on supertree and consensus tree methods. Systematic Biology 49:363–368.

    Article  PubMed  CAS  Google Scholar 

  • Thorley, J. L. 2000. Cladistic Information, Leaf Stability and Supertree Construction. Ph.D. dissertation, University of Bristol, United Kingdom.

    Google Scholar 

  • Thorley, J. L. and Page, R. D. M. 2000. RadCon: phylogenetic tree comparison and consensus. Bioinformatics 16:486–487.

    Article  PubMed  CAS  Google Scholar 

  • Wiens, J. J. and Reeder, T. W. 1995. Combining data sets with different numbers of taxa for phylogenetic analysis. Systematic Biology 44:548–558.

    Google Scholar 

  • Wilkinson, M., Tfiorley, J. L., Littlewood, D. T. J., and Bray, R. A. 2001. Towards a phylogenetic supertree of Platyhelminthes? In D. T. J. Littlewood and R. A. Bray (eds), Interrelationships of the Platyhelminthes, pp. 292–301. Taylor and Francis, London (as cited in Bininda-Emonds et al., 2002).

    Google Scholar 

  • Wilkinson, M., Thorley, J. L., Pisani, D., Lapointe, F.J., and Mcinerney, J. O. 2004. Some desiderata for liberal supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic supertrees: combining information to reveal the Tree of Life, pp. 227–246. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Williams, D. M. 1994. Combining trees and combining data. Taxon 43:449–453.

    Article  Google Scholar 

  • Wojciechowski, M. F., Sanderson, M. J., Steel, K. P., and Liston, A. 2000. Molecular phylogeny of the “temperate herbaceous tribes” of papilionoid legumes: a supertree approach. In P. Herendeen and A. Bruneau (eds), Advances in Legume Systematics 9:277–298. Royal Botanic Garden, Kew.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Baum, B.R., Ragan, M.A. (2004). The MRP Method. In: Bininda-Emonds, O.R.P. (eds) Phylogenetic Supertrees. Computational Biology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2330-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2330-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2329-3

  • Online ISBN: 978-1-4020-2330-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics