Skip to main content

Some Desiderata for Liberal Supertrees

  • Chapter
Phylogenetic Supertrees

Part of the book series: Computational Biology ((COBO,volume 4))

Abstract

Although a variety of supertree methods have been proposed, our understanding of these methods is limited. In turn, this limits the potential for biologists who seek to construct supertrees to make informed choices among the available methods. In this chapter, we distinguish between supertree methods that offer a conservative synthesis of the relationships that are agreed upon or uncontradicted by all the input trees and liberal-supertree methods that have the potential to resolve conflict. We list a series of potential desirable properties (“desiderata”) of liberal-supertree methods, discuss their relevance to biologists, and highlight where it is known that particular methods do or do not satisfy them. For biologists, the primary aim of liberal-supertree construction is to produce accurate phylogenies and most of our desiderata relate to this prime objective. Secondary desiderata pertain to the practicality of supertree methods, particularly their speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aho, A. V., Sagiv, Y., Szymanski, T. G., and Ullman, J. D. 1981. Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. Siam Journal of Computing 10:405–421.

    Article  Google Scholar 

  • Barrett, M., Donoghue, M. J., and Sober, E. 1991. Against consensus. Systematic Zoology 40:486–493.

    Article  Google Scholar 

  • Barthélemy, J.-P., McMorris, F. R., and Powers, R. C. 1995. Stability conditions for consensus functions defined on n-trees. Mathematical Computer Modeling 22:79–87.

    Article  Google Scholar 

  • Baum, B. R. 1992. Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41:3–10.

    Article  Google Scholar 

  • Bininda-Emonds, O. R. P. and Bryant, H. N. 1998. Properties of matrix representation with parsimony analyses. Systematic Biology 47:497–508.

    PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., and Purvis, A. 1999. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biological Reviews 74:143–175.

    Article  PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P., Gittleman, J. L., and Steel, M. A. 2002. The (super)tree of life: procedures, problems and prospects. Annual Review of Ecology and Systematics 33:265–289.

    Article  Google Scholar 

  • Bininda-Emonds, O. R. P. and Sanderson, M. J. 2001. An assessment of the accuracy of MRP supertree construction. Systematic Biology 50:565–579.

    Article  PubMed  CAS  Google Scholar 

  • Bremer, K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795–803.

    Article  CAS  Google Scholar 

  • Bryant, D. 1997. Building Trees, Hunting for Trees and Comparing Trees. Ph. D. dissertation, University of Canterbury, New Zealand.

    Google Scholar 

  • Bryant, D. 2002. Strict Consensus Supertrees. Technical Report, School of Computer Science, McGill University, Canada.

    Google Scholar 

  • Bryant, D. 2003. A classification of consensus methods for phylogenetics. In M. Janowitz, F.-J. Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts (eds), Bioconsensus, pp. 163–184. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Burleigh, J. G., Eulenstein, O., Fernández-Baca, D., and Sanderson, M. J. 2004. MRF supertrees. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 65–85. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Chen, D., Diao, L., Eulenstein, O., Fernandez-Baca, D., and Sanderson, M. J. 2003. Flipping: a supertree construction method. In M. Janowitz, F.-J. Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts (eds), Bioconsensus, pp. 135–160. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Cotton, J. A. and Page, R. D. M. 2004. Tangled trees from molecular markers: reconciling conflict between phylogenies to build molecular supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 107–125. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Dasgupta, B., He, X., Jiang, T., Li, M., Tromp, J., and Zhang, L. 1997. On distances between phylogenetic trees. In M. Saks (ed.), Proceedings of the 8th Annual Acm-Siam Symposium on Discrete Algorithms, pp. 427–436. Association for Computing Machinery, New York.

    Google Scholar 

  • Daubin, V., Gouy, M., and Perriere, G. 2002. A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Research 12:1080–1090.

    Article  PubMed  CAS  Google Scholar 

  • Dekker, M. C. H. 1986. Reconstruction Methods for Derivation Trees. Master ’s thesis, Department of Mathematics and Computer Science, Vrije Universiteit, Amsterdam.

    Google Scholar 

  • Donoghue, M. J., Olmstead, R. G., Smith, J. F., and Palmer, J. D. 1992. Phylogenetic relationships of Dipsacales based on rbcL sequences. Annals of the Missouri Botanical Gardens 79:333–345.

    Article  Google Scholar 

  • Estabrook, G. F., McMorris, F. R., and Meacham, C. A. 1985. Comparison of undirected phylogenetic trees based on subtrees of four evolutionary units. Systematic Zoology 34:193–200.

    Article  Google Scholar 

  • Farris, J. S., Albert, V. A., Källersjö, M., Lipscomb, D., and Kluge, A. G. 1996. Parsimony jackknifing outperforms neighbor joining. Cladistics 12:99–124.

    Article  Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791.

    Article  Google Scholar 

  • Finden, C. R. and Gordon, A. D. 1985. Obtaining common pruned trees. Journal of Classification 2:225–276.

    Article  Google Scholar 

  • Gittleman, J. L., Jones, K. E., and Price, S. A. 2004. Supertrees: using complete phylogenies in comparative biology. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 439–460. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Goloboff, P. A. and Pol, D. 2002. Semi-strict supertrees. Cladistics 18:514–525.

    Google Scholar 

  • Gordon, A. D. 1986. Consensus supertrees: the synthesis of rooted trees containing overlapping sets of labeled leaves. Journal of Classification 3:31–39.

    Article  Google Scholar 

  • Keynes, J. M. 1920. A Treatise on Probability. MacMillan, London.

    Google Scholar 

  • Lanyon, S. M. 1993. Phylogenetic frameworks: towards a firmer foundation for the comparative approach. Biological Journal of the Linnean Society 49:45–61.

    Article  Google Scholar 

  • Lapointe, F.-J. and Cucumel, G. 1997. The average consensus procedure: combination of weighted trees containing identical or overlapping sets of taxa. Systematic Biology 46:306–312.

    Article  Google Scholar 

  • Lapointe, F.-J. and Cucumel, G. 2002. Multiple consensus trees. In K. Jajuga, A. Sokolowski, and H.-H. Bock (eds), Classification, Clustering and Data Analysis: Recent Advances and Applications, pp. 359–364. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Lapointe, F.-J. and Cucumel, G. 2003. How good can a consensus get? Assessing the reliability of consensus trees in phylogenetic studies. In M. Janowitz, F.-J. Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts (eds), Bioconsensus, pp. 205–220. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Lapointe, F.-J. and Kirsch, J. A. W. 2001. Construction and verification of a large phylogeny of marsupials. Australian Mammalogy 3:9–22.

    Article  Google Scholar 

  • Lapointe, F.-J., Kirsch, J. A. W., and Bleiweiss, R. 1994. Jackknifing of weighted trees: validation of phylogenies reconstructed from distance matrices. Molecular Phylogenetics and Evolution 3:256–267.

    Article  PubMed  CAS  Google Scholar 

  • Lapointe, F.-J. and Levasseur, C. 2004. Everything you always wanted to know about the average consensus, and more. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 87–105. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Lapointe, F.-J., Wilkinson, M., and Bryant, D. 2003. Matrix representations with parsimony or with distances: two sides of the same coin? Systematic Biology 52:865–868.

    PubMed  Google Scholar 

  • Larget, B. and Simon, D. 1999. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution 16:750–759.

    Article  CAS  Google Scholar 

  • Liu, F.-G. R., Miyamoto, M. M., Freire, N. P., Ong, P. Q., Tennant, M. R., Young, T. S., and Gugel, K. F. 2001. Molecular and morphological supertrees for eutherian (placental) mammals. Science 291:1786–1789.

    Article  PubMed  CAS  Google Scholar 

  • Mann, C. 1990. Meta-analysis in the breech. Science 249:476–479.

    Article  PubMed  CAS  Google Scholar 

  • McMorris, F. R. and Neumann, D. 1983. Consensus functions defined on trees. Mathematical Social Sciences 4:131–136.

    Article  Google Scholar 

  • Nixon, K. C. and Carpenter, J. M. 1996. On consensus, collapsibility and clade concordance. Cladistics 12:305–201.

    Article  Google Scholar 

  • Page, R. D. M. 2002. Modified mincut supertrees. In R. Guigó and D. Gusfield (eds), Algorithms in Bioinformatics, Second International Workshop, Wabi 2002, Rome, Italy, September 17–21, 2002, Proceedings, pp. 537–552. Springer, Berlin.

    Google Scholar 

  • Piaggio-Talice, R., Burleigh, J. G., and Eulenstein, O. 2004. Quartet supertrees. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 173–191. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Pisani, D. 2002. Comparing and Combining Data and Trees in Phylogenetic Analysis. Ph.D. dissertation, Department of Earth Sciences, University of Bristol, United Kingdom.

    Google Scholar 

  • Pisani, D. and Wilkinson, M. 2002. Mrp, taxonomic congruence and total evidence. Systematic Biology 51:151–155.

    Article  PubMed  Google Scholar 

  • Pisani, D., Yates, A. M., Langer, M. C., and Benton, M. J. 2002. A genus-level supertree of the Dinosauria. Proceedings of the Royal Society of London B. 269:915–921.

    Article  Google Scholar 

  • Purvis, A. 1995a. A modification to Baum and Ragan ’s method for combining phylogenetic trees. Systematic Biology 44:251–255.

    Google Scholar 

  • Purvis, A. 1995b. A composite estimate of primate phylogeny. Philosophical Transactions of the Royal Society of London B 348:405–421.

    Article  CAS  Google Scholar 

  • Purvis, A. and Webster, A. J. 1999. Phylogenetically independent comparisons and primate phylogeny. In P. C. Lee (ed.), Comparative Primate Socioecology, pp. 44–70. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • Ragan, M. A. 1992. Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution 1:53–58.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo, A. G. 1996. On combining cladograms. Taxon 45:267–274.

    Article  Google Scholar 

  • Ronquist, F. 1996. Matrix representation of trees, redundancy, and weighting. Systematic Biology 45:247–253.

    Article  Google Scholar 

  • Ross, H. A. and Rodrigo, A. G. 2004. An assessment of matrix representation with compatibility in supertree construction. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 35–63. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Sanderson, M. J., Purvis, A., and Henze, C. 1998 Phylogenetic supertrees: assembling the trees of life. Trends in Ecology and Evolution 13:105–109.

    Article  PubMed  CAS  Google Scholar 

  • Semple, C. and Steel, M. 2000. A supertree method for rooted trees. Discrete Applied Mathematics 105:147–158.

    Article  Google Scholar 

  • Semple, C. and Steel, M. 2002. Tree reconstruction from multistate characters. Advances in Applied Mathematics 28:169–184.

    Article  Google Scholar 

  • Shao, K. and Sokal, R. R. 1990. Tree balance. Systematic Zoology 39:266–276.

    Article  Google Scholar 

  • Steel, M., Dress, A. W. M., and Böcker, S. 2000. Simple but fundamental limitations on supertree and consensus tree methods. Systematic Biology 49:363–368.

    Article  PubMed  CAS  Google Scholar 

  • Strimmer, K. and Von Haeseler, A. 1996. Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Molecular Biology and Evolution 13:964–969.

    Article  CAS  Google Scholar 

  • Swofford, D. L. 1991. When are phylogeny estimates from molecular and morphological data incongruent? In M. M. Miyamoto and J. Cracraft, (eds), Phylogenetic Analyses of DNA Sequences, pp. 295–333. Oxford University Press, New York.

    Google Scholar 

  • Thorley, J. L. 2000. Cladistic Information, Leaf Stability and Supertree Construction. Ph.D. dissertation, School of Biological Sciences, University of Bristol, United Kingdom.

    Google Scholar 

  • Thorley, J. L. and Wilkinson, M. 2003. A view of supertree methods. In M. Janowitz, F.-J. Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts (eds), Bioconsensus, pp. 185–193. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Wilkinson, M. 1994. Common cladistic information and its consensus representation: reduced Adams and reduced cladistic consensus trees and profiles. Systematic Biology 43:343–368.

    Google Scholar 

  • Wilkinson, M. 1996. Majority-rule reduced consensus methods and their use in bootstrapping. Molecular Biology and Evolution 13:437–444.

    Article  PubMed  Google Scholar 

  • Wilkinson, M., Lapointe, F.-J., and Gower, D. J. 2003. Branch lengths and support. Systematic Biology 52:127–130.

    Article  PubMed  Google Scholar 

  • Wilkinson, M. and Thorley, J. L. 2003. Reduced consensus. In M. Janowitz, F.-J. Lapointe, F. R. McMorris, B. Mirkin, and F. S. Roberts (eds), Bioconsensus, pp. 195–203. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  • Wilkinson, M., Thorley, J. L., Littlewood, D. T. J., and Bray, R. A. 2001. Towards a phylogenetic supertree for the Platyhelminthes? In D. T. J. Littlewood and R. A. Bray (eds), Interrelationships of the Platyhelminthes, pp. 292–301. Chapman-Hall, London.

    Google Scholar 

  • Wilkinson, M., Thorley, J. L., and Upchurch, P. M. 2000. A chain is no stronger than its weakest link: double decay analyses of phylogenetic hypotheses. Systematic Biology 49:754–776.

    Article  PubMed  CAS  Google Scholar 

  • Willson, S. J. 1999. Building phylogenetic trees from quartets by using local inconsistency measures. Molecular Biology and Evolution 16:685–693.

    Article  CAS  Google Scholar 

  • Willson, S. J. 2001. An error correcting map for quartets can improve the signals for phylogenetic trees. Molecular Biology and Evolution 18:344–351.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wilkinson, M., Thorley, J.L., Pisani, D., Lapointe, FJ., McInerney, J.O. (2004). Some Desiderata for Liberal Supertrees. In: Bininda-Emonds, O.R.P. (eds) Phylogenetic Supertrees. Computational Biology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2330-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2330-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2329-3

  • Online ISBN: 978-1-4020-2330-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics