Skip to main content

Bayesian Supertrees

  • Chapter

Part of the book series: Computational Biology ((COBO,volume 4))

Abstract

In this chapter, we develop a Bayesian approach to supertree construction. Bayesian inference requires that prior knowledge be specified in terms of a probability distribution and incorporates this evidence in new analyses. This provides a natural framework for the accumulation of phylogenetic evidence, but it requires that phylogenetic results be expressed as probability distributions on trees. Because there are so many possible trees, it is usually not feasible to estimate the probability of each individual tree. Therefore, Bayesians summarize the distribution typically in terms of taxon-bipartition frequencies instead. However, bipartition frequencies are related only indirectly to tree probabilities. We discuss two ways in which taxon-bipartition frequencies can be translated into sets of multiplicative factors that function as keys to the probability distribution on trees. The Weighted Independent Binary (WIB) method associates factors to the presence or absence of taxon bipartitions, whereas the Weighted Additive Binary (WAB) method has factors with graded responses dependent on the degree of conflict between the tree and the partition. Although the methods are similar, we found that WAB is superior to WIB. We discuss several ways of estimating WAB factors from partition frequencies or directly from the data. One of these methods suggests a similarity between WAB factors and the decay index; indeed, the WAB factors represent a more natural measure of clade support than the bipartition frequencies themselves or the decay index and its probabilistic analog. WAB factors provide an efficient and convenient way of retrieving prior tree probabilities and WAB supermatrices accurately describe fully statistically specified supertree spaces that can be sampled using MCMC algorithms with the computational efficiency of parsimony. This should allow construction of Bayesian supertrees with thousands of taxa.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baum, B. R. 1992. Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41:1–10.

    Article  Google Scholar 

  • Baum, B. R. and Ragan, M. A. 2004. The MRP method. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 17–34. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Bininda-Emonds, O. R. P. and Bryant, H. N. 1998. Properties of matrix representation with parsimony analyses. Systematic Biology 47:497–508.

    PubMed  CAS  Google Scholar 

  • Bininda-Emonds, O. R. P. and Sanderson, M. J. 2001. Assessment of the accuracy of matrix representation with parsimony analysis supertree construction. Systematic Biology 50:565–579.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, D. R. 1981. Hennig ’s parasitological method: a proposed solution. Systematic Zoology 30:229–249.

    Article  Google Scholar 

  • Farris, J. S., Kluge, A. G., and Eckhardt, M. J. 1970. A numerical approach to phylogenetic systematics. Systematic Zoology 19:172–191.

    Article  Google Scholar 

  • Felsenstein, J. 1978. The number of evolutionary trees. Systematic Zoology 27:27–33.

    Article  Google Scholar 

  • Gamerman, D. 1997. Markov Chain Monte Carlo. Chapman and Hall, Boca Raton, Florida.

    Google Scholar 

  • Gatesy, J. and Springer, M. S. 2004. A critique of matrix representation with parsimony supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 369–388. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. 1995. Bayesian Data Analysis. Chapman and Hall, Boca Raton, Florida.

    Google Scholar 

  • Goloboff, P. A. 1996. Methods for faster parsimony analysis. Cladistics 12:199–220.

    Article  Google Scholar 

  • Huelsenbeck, J. P., Ronquist, F., Nielsen, R., and Bollback, J. P. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314.

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck, J. P., Larget, B., Miller, R. E., and Ronquist, F. 2002. Potential applications and pitfalls of Bayesian inference of phylogeny. Systematic Biology 51:673–688.

    Article  PubMed  Google Scholar 

  • Lewis, P. O. 2000. Phylogenetic systematics turns over a new leaf. Trends in Ecology and Evolution 16:30–37.

    Article  Google Scholar 

  • Newton, M. A., Raftery, A. E., Davison, A. C., Bacha, M., Celeux, G., Carlin, B. P., Clifford, P., Lu, C., Sherman, M., Tanner, M. A., Gelfand, A. E., Mallick, B. K., Gelman, A., Grieve, A. P., Kunsch, H. R., Leonard, T., Hsu, J. S. J., Liu, J. S., Rubin, D. B.Lo, A. Y., Louis, T. A., Neal, R. M., Owen, A. B., Tu, D. S., Gilks, W. R., Roberts, G., Sweeting, T., Bates, D., Ritter, G., Worton, B. J., Barnard, G. A., Gibbens, R., and Silverman, B. 1994. Approximate Bayesian inference by the weighted bootstrap (with discussion). Journal of the Royal Statistical Society, Series B 56:3–48.

    Google Scholar 

  • Page, R. D. M. 2002. Modified mincut supertrees. In R. Guigó and D. Gusfield (eds), Algorithms in Bioinformatics, Second International Workshop, Wabi 2002, Rome, Italy, September 17–21, 2002, Proceedings, pp. 537–552. Springer, Berlin.

    Google Scholar 

  • Page, R. D. M. 2004. Taxonomy, supertrees, and the Tree of Life. In O. R. P. Bininda-Emonds (ed). Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 247–265. Kluwer Academic, Dordrecht, the Netherlands.

    Google Scholar 

  • Purvis, A. 1995. A modification to Baum and Ragan ’s method for combining phylogenetic trees. Systematic Biology 44:251–255.

    Google Scholar 

  • Ragan, M. A. 1992. Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution1:53–58.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, D. F. and Foulds, L. R. 1981. Comparison of phylogenetic trees. Mathematical Biosciences 53:131–148.

    Article  Google Scholar 

  • Ronquist, F. 1996. Matrix representation of trees, redundancy, and weighting. Systematic Biology 45:247–253.

    Article  Google Scholar 

  • Ronquist, F. 1998. Fast Fitch-parsimony algorithms for large data sets. Cladistics 14:387–400.

    Article  Google Scholar 

  • Ronquist, F. and Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.

    Article  PubMed  CAS  Google Scholar 

  • Russo, C. A. M., Takezaki, N., and Nei, M. 1995. Molecular phylogeny and divergence times of drosophilid species. Molecular Biology and Evolution 12:391–404.

    PubMed  CAS  Google Scholar 

  • Sanderson, M. J., Purvis, A., and Henze, C. 1998. Phylogenetic supertrees: assembling the trees of life. Trends in Ecology and Evolution 13:105–109.

    Article  PubMed  CAS  Google Scholar 

  • Semple, C. and Steel, M. 2000. A supertree method for rooted trees. Discrete Applied Mathematics 105:147–158

    Article  Google Scholar 

  • Steel, M., Dress, A., and Böcker, S. 2000. Simple but fundamental limitations on supertree and consensus tree methods. Systematic Biology 49:363–368.

    Article  PubMed  CAS  Google Scholar 

  • Swofford, D. L. 2002. Paup*. Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ronquist, F., Huelsenbeck, J.P., Britton, T. (2004). Bayesian Supertrees. In: Bininda-Emonds, O.R.P. (eds) Phylogenetic Supertrees. Computational Biology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2330-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2330-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2329-3

  • Online ISBN: 978-1-4020-2330-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics