New uses for old phylogenies

An introduction to the volume
  • Olaf R. P. Bininda-Emonds
Part of the Computational Biology book series (COBO, volume 4)


What are supertrees and what is all the fuss about?


Systematic Biology Matrix Representation Source Tree Total Evidence Diversification Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aho, A. V., Sagiv, Y., Szymanski, T. G., and Ullman, J. D. 1981. Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. Siam Journal on Computing 10:405–421.CrossRefGoogle Scholar
  2. Barthélemy, J.-P., Mcmorris, F. R., and Powers, R. C. 1995. Stability conditions for consensus functions defined on n-trees. Mathematical Computer Modeling 22:79–87.CrossRefGoogle Scholar
  3. Baum, B. R. 1992. Combining trees as a way of combining data sets for phylogenetic inference, and the desirability of combining gene trees. Taxon 41:3–10.CrossRefGoogle Scholar
  4. Baum, B. R. and Ragan, M. A. 1993. Reply to A.G. Rodrigo’s “A comment on Baum’s method for combining phylogenetic trees”. Taxon 42:637–640.CrossRefGoogle Scholar
  5. Bininda-Emonds, O. R. P., Gittleman, J. L., and Purvis, A. 1999. Building large trees by combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia). Biological Reviews 74:143–175.PubMedCrossRefGoogle Scholar
  6. Bininda-Emonds, O. R. P., Gittleman, J. L., and Steel, M. A. 2002. The (super)tree of life: procedures, problems, and prospects. Annual Review of Ecology and Systematics 33:265–289.CrossRefGoogle Scholar
  7. Brooks, D. R. 1981. Hennig’s parasitological method: a proposed solution. Systematic Zoology 30:229–249.CrossRefGoogle Scholar
  8. Cardillo, M. and Bromham, L. 2001. Body size and risk of extinction in Australian mammals. Conservation Biology 15:1435–1440.CrossRefGoogle Scholar
  9. Chan, K. M. A. and Moore, B. R. 2002. Whole-tree methods for detecting differential diversification rates. Systematic Biology 51:855–865.PubMedCrossRefGoogle Scholar
  10. Doyle, J. J. 1992. Gene trees and species trees: molecular systematics as one-character taxonomy. Systematic Botany 17:144–163.CrossRefGoogle Scholar
  11. Farris, J. S., Kluge, A. G., and Eckhardt, M. J. 1970. A numerical approach to phylogenetic systematics. Systematic Zoology 19:172–191.CrossRefGoogle Scholar
  12. Garland, T., Jr, Dickerman, A. W., Janis, C. M., and Jones, J. A. 1993. Phylogenetic analysis of covariance by computer simulation. Systematic Biology 42:265–292.Google Scholar
  13. Gatesy, J., Matthee, C., DeSalle, R., and Hayashi, C. 2002. Resolution of a supertree / supermatrix paradox. Systematic Biology 51:652–664.PubMedCrossRefGoogle Scholar
  14. Goloboff, P. A. and Pol, D. 2002. Semi-strict supertrees. Cladistics 18:514–525.Google Scholar
  15. Gordon, A. D. 1986. Consensus supertrees: the synthesis of rooted trees containing overlapping sets of labeled leaves. Journal of Classification 3:31–39.CrossRefGoogle Scholar
  16. Hall, J. P. W. and Harvey, D. J. 2002. Basal subtribes of the Nymphidiini (Lepidoptera: Riodinidae): phylogeny and myrmecophily. Cladistics 18:539–569.CrossRefGoogle Scholar
  17. Harvey, P. H., Leigh Brown, A. J., Maynard Smith, J., and Nee, S. (eds) 1996. New Uses for New Phylogenies. Oxford University Press, Oxford.Google Scholar
  18. Huelsenbeck, J. P., Larget, B., and Swofford, D. 2000. A compound Poisson process for relaxing the molecular clock. Genetics 154:1879–1892.PubMedGoogle Scholar
  19. Johnson, K. P. 2001. Taxon sampling and the phylogenetic position of Passeriformes: evidence from 916 avian cytochrome b sequences. Systematic Biology 50:128–136.PubMedGoogle Scholar
  20. Källersjö, M., Farris, J. S., Chase, M. W., Bremer, B., Fay, M. F., Humphries, C. J., Petersen, G., Seberg, O., and Bremer, K. 1998. Simultaneous parsimony jackknife analysis of 2538 rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants. Plant Systematics and Evolution 213:259–287.CrossRefGoogle Scholar
  21. Kennedy, M., Spencer, H. G., and Gray, R. D. 1996. Hop, step and gape: do the social displays of the Pelecaniformes reflect their phylogeny? Animal Behaviour 51:273–291.CrossRefGoogle Scholar
  22. Kluge, A. G. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Zoology 38:7–25.CrossRefGoogle Scholar
  23. Lapointe, F.-J. and Cucumel, G. 1997. The average consensus procedure: combination of weighted trees containing identical or overlapping sets of taxa. Systematic Biology 46:306–312.CrossRefGoogle Scholar
  24. McMorris, F. R. and Neumann, D. 1983. Consensus functions defined on trees. Mathematical Social Sciences 4:131–136.CrossRefGoogle Scholar
  25. Moore, B. R., Chan, K. M. A., and Donoghue, M. J. 2004. Detecting diversification rate variation in supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 487–533. Kluwer Academic, Dordrecht, the Netherlands.Google Scholar
  26. Novacek, M. J. 2001. Mammalian phylogeny: genes and supertrees. Current Biology 11:R573-R575.PubMedCrossRefGoogle Scholar
  27. Ortolani, A. 1999. Spots, stripes, tail tips and dark eyes: predicting the function of carnivore colour patterns using the comparative method. Biological Journal of the Linnean Society 67:433–476.CrossRefGoogle Scholar
  28. Page, R. D. M. 2002. Modified mincut supertrees. In R. Guigó and D. Gusfield (eds), Algorithms in Bioinformatics, Second International Workshop, Wabi 2002, Rome, Italy, September 17–21, 2002, Proceedings, pp. 537–552. Springer, Berlin.Google Scholar
  29. Pennisi, E. 2003. Modernizing the Tree of Life. Science 300:1692–1697.PubMedCrossRefGoogle Scholar
  30. Pisani, D. 2002. Comparing and Combining Data and Trees in Phylogenetic Analysis. Ph.D. dissertation, Department of Earth Sciences, University of Bristol, United Kingdom.Google Scholar
  31. Pisani, D. and Wilkinson, M. 2002. Matrix representation with parsimony, taxonomic congruence, and total evidence. Systematic Biology 51:151–155.PubMedCrossRefGoogle Scholar
  32. Purvis, A. 1995a. A composite estimate of primate phylogeny. Philosophical Transactions of the Royal Society of London B 348:405–421.CrossRefGoogle Scholar
  33. Purvis, A. 1995b. A modification to Baum and Ragan’s method for combining phylogenetic trees. Systematic Biology 44:251–255.Google Scholar
  34. Purvis, A., Nee, S., and Harvey, P. H. 1995. Macroevolutionary inferences from primate phylogeny. Proceedings of the Royal Society of London B 260:329–333.CrossRefGoogle Scholar
  35. Purvis, A. and Webster, A. J. 1999. Phylogenetically independent comparisons and primate phylogeny. In P. C. Lee (ed.), Comparative Primate Socioecology, pp. 44–70. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  36. Ragan, M. A. 1992. Phylogenetic inference based on matrix representation of trees. Molecular Phylogenetics and Evolution 1:53–58.PubMedCrossRefGoogle Scholar
  37. Rambaut, A. and Bromham, L. 1998. Estimating divergence dates from molecular sequences. Molecular Biology and Evolution 15:442–448.PubMedCrossRefGoogle Scholar
  38. Rodrigo, A. G. 1996. On combining cladograms. Taxon 45:267–274.CrossRefGoogle Scholar
  39. Salamin, N., Hodkinson, T. R., and Savolainen, V. 2002. Building supertrees: an empirical assessment using the grass family (Poaceae). Systematic Biology 51:136–150.PubMedCrossRefGoogle Scholar
  40. Sanderson, M. J. 2002. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution 19:101–109.PubMedCrossRefGoogle Scholar
  41. Sanderson, M. J., Purvis, A., and Henze, C. 1998. Phylogenetic supertrees: assembling the trees of life. Trends in Ecology and Evolution 13:105–109.PubMedCrossRefGoogle Scholar
  42. Semple, C. and Steel, M. 2000. A supertree method for rooted trees. Discrete Applied Mathematics 105:147–158.CrossRefGoogle Scholar
  43. Slowinski, J. B. and Page, R. D. M. 1999. How should species phylogenies be inferred from sequence data? Systematic Biology 48:814–825.PubMedCrossRefGoogle Scholar
  44. Soltis, P. S. and Souris, D. E. 2001. Molecular systematics: assembling and using the Tree of Life. Taxon 50:663–677.CrossRefGoogle Scholar
  45. Springer, M. S. and De Jong, W. W. 2001. Phylogenetics. Which mammalian supertree to bark up? Science 291:1709–1711.PubMedCrossRefGoogle Scholar
  46. Steel, M., Dress, A. W. M., and Böcker, S. 2000. Simple but fundamental limitations on supertree and consensus tree methods. Systematic Biology 49:363–368.PubMedCrossRefGoogle Scholar
  47. Thorley, J. L. and Page, R. D. 2000. RadCon: phylogenetic tree comparison and consensus. Bioinformatics 16:486–7.PubMedCrossRefGoogle Scholar
  48. Thorne, J. L., Kishino, H., and Painter, I. S. 1998. Estimating the rate of evolution of the rate of molecular evolution. Molecular Biology and Evolution 15:1647–1657.PubMedCrossRefGoogle Scholar
  49. Thorne, J. L. and Kishino, H. 2002. Divergence time and evolutionary rate estimation with multilocus data. Systematic Biology 51:689–702.PubMedCrossRefGoogle Scholar
  50. Vos, R. A. and Mooers, A. O. 2004. Reconstructing divergence times for supertrees. In O. R. P. Bininda-Emonds (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life, pp. 281–299. Kluwer Academic, Dordrecht, the Netherlands.Google Scholar
  51. Webb, C. O. 2000. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. American Naturalist 156:145–155.PubMedCrossRefGoogle Scholar
  52. Willson, S. J. 1999. Building phylogenetic trees from quartets by using local inconsistency measures. Molecular Biology and Evolution 16:685–693.CrossRefGoogle Scholar
  53. Willson, S. J. 2001. An error correcting map for quartets can improve the signals for phylogenetic trees. Molecular Biology and Evolution 18:344–351.PubMedCrossRefGoogle Scholar
  54. Yoder, A. D. and Yang, Z. H. 2000. Estimation of speciation dates using local molecular clocks. Molecular Biology and Evolution 17:1081–1090.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Olaf R. P. Bininda-Emonds

There are no affiliations available

Personalised recommendations