Advertisement

Switching Transitions in Confined Liquid Crystals

  • Ohad Levy
Conference paper
Part of the NATO Science Series book series (NAII, volume 158)

Abstract

Field induced switching transitions in dispersions of liquid crystal droplets are the basis for a wide range of electro-optic applications. They are studied analytically by an anisotropic version of the Maxwell Garnett approximation, balancing the electrostatic energy of the droplets with a strong anchoring elastic energy. As a result of the confined geometry, these transitions defer qualitatively from the Frederikse transition in homogeneous liquid crystal films, e. g. the threshold field does not depend on the thickness of the sample, the transition characteristics may be controlled by selecting the initial orientation distribution of the droplets and splitting of the transition occurs in some situations.

Keywords

Liquid Crystal Nematic Liquid Crystal Electrostatic Energy Threshold Field Polymer Disperse Liquid Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P.S. Drazaic, Liquid Crystal Dispersions (World Scientific, Singapore 1995), Liquid Crystals in Complex Geometries, edited by G.P. Crawford and S. Zumer (Taylor and Francis, London 1996).Google Scholar
  2. [2]
    P.G. deGennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, Oxford 1993), 2nd ed.Google Scholar
  3. [3]
    K. Amundson, Phys. Rev. E 53, 2412 (1996).CrossRefGoogle Scholar
  4. [4]
    I. Dierking et al., J. App. Phys. 81, 3007 (1997).CrossRefGoogle Scholar
  5. [5]
    G.A. Held et al., Phys. Rev. Lett. 79, 3443 (1997).CrossRefGoogle Scholar
  6. [6]
    K. Amundson et al., Phys. Rev. E 55, 1646 (1997).CrossRefGoogle Scholar
  7. [7]
    M. Ambrozic et al., Phys. Rev. E 56, 1825 (1997).CrossRefGoogle Scholar
  8. [8]
    S.A. Carter et al., J. App. Phys. 81, 5992 (1997).CrossRefGoogle Scholar
  9. [9]
    J.D. LeGrange et al., J. App. Phys. 81, 5984 (1997).CrossRefGoogle Scholar
  10. [10]
    M. Copic and A, Mertelj, Phys. Rev. Lett. 80, 1449 (1998).CrossRefGoogle Scholar
  11. [11]
    K. Amundson and M. Srinivasaro, Phys. Rev. E 58, R1211 (1998).CrossRefGoogle Scholar
  12. [12]
    R. Bartolino et al., J. App. Phys. 85, 2870 (1999).CrossRefGoogle Scholar
  13. [13]
    R.-Q. Ma and D.-K. Yang, Phys. Rev. E 61, 1567 (2000).CrossRefGoogle Scholar
  14. [14]
    M. Copic and A. Mertelj, Phys. Rev. E 61, 1622 (2000).CrossRefGoogle Scholar
  15. [15]
    B.G. Wu et al., Liq. Cryst. 5, 1453 (1989).CrossRefGoogle Scholar
  16. [16]
    J.R. Kelly and P. Palffy-Muhoray, Mol. Cryst. Liq. Cryst. 243, 11 (1994)CrossRefGoogle Scholar
  17. [17]
    V.Y. Reshetnyak et al., J. Phys. D 30, 3253 (1997).CrossRefGoogle Scholar
  18. [18]
    O. Levy, Phys. Rev. E 61, 5385 (2000).CrossRefGoogle Scholar
  19. [19]
    O. Levy, Phys. Rev. Lett. 86, 2822 (2001).CrossRefGoogle Scholar
  20. [20]
    O. Levy and D. Stroud, Phys. Rev. B 56, 8035 (1997)CrossRefGoogle Scholar
  21. [20a]
    O. Levy, Phys. Rev. E 66, 011404 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Ohad Levy
    • 1
  1. 1.Department of PhysicsNRCNBeer-ShevaIsrael

Personalised recommendations