Hydrodynamics of “Thermal” Granular Convection

  • Evgeniy Khain
Conference paper
Part of the NATO Science Series book series (NAII, volume 158)

Abstract

We employ the Navier-Stokes granular hydrodynamics for determining the threshold of “thermal” convection in a horizontal layer of fluidized granular medium [1, 2]. A recent experiment with a highly fluidized three-dimensional granular flow [3] gives strong evidence for thermal convection. In the simplest model of inelastic hard spheres, the convection sets in when the restitution co-efficient becomes smaller than a critical value [4] . When gravity goes to zero, the convection instability turns into a recently discovered phase separation insta-bility [5]. A lower bound for the convection threshold is determined using the Schwarzschild criterion of stability of classical compressible fluid.

Keywords

Entropy Convection Posite Stein Argentina 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Khain and B. Meerson, Phys. Rev. E 67, 021–306 (2003).CrossRefGoogle Scholar
  2. [2]
    X. He, B. Meerson, and G. Doolen, Phys. Rev. E 65, 030–301(R) (2002).Google Scholar
  3. [3]
    R.D. Wildman, J.M. Huntley, and D.J. Parker, Phys. Rev. Lett. 86, 3304 (2001).CrossRefGoogle Scholar
  4. [4]
    R. Ramirez, D. Risso, and P. Cordero, Phys. Rev. Lett. 85, 1230 (2000).CrossRefGoogle Scholar
  5. [5]
    E. Livne, B. Meerson, and P.V. Sasorov, Phys. Rev. E 65, 021–302 (2002);CrossRefGoogle Scholar
  6. [5a]
    E. Khain and B. Meerson, Phys. Rev. E 66, 021–306 (2002);MathSciNetCrossRefGoogle Scholar
  7. [5b]
    M. Argentina, M.G. Clerc, and R. Soto, Phys. Rev. Lett. 89, 044–301 (2002);CrossRefGoogle Scholar
  8. [5c]
    J.J. Brey, M.J. Ruiz-Montero, F. Moreno, and R. Garcia-Rojo, Phys. Rev. E 65, 061–302 (2002);CrossRefGoogle Scholar
  9. [5d]
    E. Livne, B. Meerson, and P.V. Sasorov, Phys. Rev. E 66, 050301 (2002);CrossRefGoogle Scholar
  10. [5e]
    B. Meerson, T. Poschel, P.V. Sasorov, and T. Schwager, cond-mat/0208286.Google Scholar
  11. [6]
    J. Duran, Sands, Powders and Grains. An Introduction to the Physics of Granular Mate-rials (Springer, New York, 2000);CrossRefGoogle Scholar
  12. [6]
    L.P. Kadanoff, Rev. Mod. Phys 71, 435 (1999);CrossRefGoogle Scholar
  13. [6]
    P.G. de Gennes, Rev. Mod. Phys 71, S374(1999).CrossRefGoogle Scholar
  14. [7]
    P.K. Haff, J. Fluid Mech. 134, 401 (1983);MATHCrossRefGoogle Scholar
  15. [7]
    J.T. Jenkins and M.W. Richman, Phys. Fluids 28, 3485(1985).MATHCrossRefGoogle Scholar
  16. [8]
    P. Sunthar and V. Kumaran, Phys. Rev. E 64, 041303, (2001).CrossRefGoogle Scholar
  17. [9]
    J. Talbot and P. Viot, Phys. Rev. Lett. 89, 064301; 179904 (2002).CrossRefGoogle Scholar
  18. [10]
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1981).Google Scholar
  19. [11]
    L.D. Landau and E.M. Lifshitz, Course of Theoretical Physics: Vol. 6 Fluid Mechanics (Pergamon, Oxford, 1987), pp. 7–8;Google Scholar
  20. [11]
    E.A. Spiegel, Astrophys. J. 141, 1068 (1965);MathSciNetCrossRefGoogle Scholar
  21. [11]
    M.S. Gitterman and V.A. Steinberg, High Temp. 8, 754 (1970);Google Scholar
  22. [11]
    M.S. Gitterman and V.A. Stein-berg, J. Appl. Math. Mech. 34, 305 (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Evgeniy Khain
    • 1
  1. 1.Racah Institute of PhysicsHebrew University of JerusalemJerusalemIsrael

Personalised recommendations