Skip to main content

DNS of an Oblique Shock Wave Impinging upon a Turbulent Boundary Layer

  • Conference paper
Direct and Large-Eddy Simulation V

Part of the book series: ERCOFTAC Series ((ERCO,volume 9))

Abstract

A supersonic boundary layer at M = 2, with inflow displacement-thickness Reynolds number Reδ* = 3775, is subjected to an impinging oblique shock. The spatially developing boundary layer is generated using an idealized unsteady analytic inflow profile that emulates the dynamical features of wall-bounded turbulence; this approach has the advantage of creating a self-contained simulation with deterministic inflow conditions that prompt the realistic transfer of energy from the mean flow to the turbulence, and thereby a realistic fully developed turbulent boundary layer in a fairly short downstream distance. The impinging shock induces a small separation bubble and significant intrinsic compressibility effects unrelated to mean property variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams N. A. Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Ree = 1685. J. Fluid Mech., 420: 47–83, 2000.

    Article  ADS  MATH  Google Scholar 

  • Carpenter, M. H., Nordstrom, J. Gottlieb, D. A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comput. Phys., 148 (2): 341–365, 1999.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Garnier, E., Sagaut, P. Deville, M. Large Eddy Simulation of Shock/Boundary-layer Interaction. AIAA J., 40: 1935–1944, 2002.

    Article  ADS  Google Scholar 

  • Gerritsen, M. Olsson, P. Designing an efficient solution strategy for fluid flow: II. Stable high-order central finite difference schemes on composite adaptive grids with sharp shock resolution. J. Comput. Phys., 147: 293–317, 1998.

    Article  ADS  MATH  Google Scholar 

  • Guarani, S. E., Moser, R. D., Shariff, K. Wray, A. Direct numerical simulation of a supersonic turbulent boundary at Mach 2.5. J. Fluid Mech., 414: 1–33, 2000.

    Article  ADS  Google Scholar 

  • Harten, A. On the symmetric form of systems for conservation laws with entropy., 151–164, 1983.

    Google Scholar 

  • Huang, P. G, Coleman, G. N. Bradshaw, P. Compressible turbulent channel flow: DNS results and modelling. J. Fluid Mech., 305: 185–218, 1995.

    Article  ADS  MATH  Google Scholar 

  • Lawal, A. A. Sandham, N. D. Direct Simulation of transonic flow over a bump. Proc. of Direct and Large-eddy Simulation, Twente, 2001.

    Google Scholar 

  • Li, Q. Numerical study of Mach number effects in wall-bounded turbulence. PhD Thesis, University of Southampton, 2003.

    Google Scholar 

  • Luchik, T. S. Tiederman, W. G. Timescale and structure of ejections and bursts in turbulent channel flows. J. Fluid Mech., 174: 529–552, 1987.

    Article  ADS  Google Scholar 

  • Maeder, T., Adams, N. A. Kleiser, L. Direct simulation of turbulent supersonic boundary layers by an extended temporal approach. J. Fluid Mech., 429: 187–216, 2001.

    Article  ADS  MATH  Google Scholar 

  • McComb, W. D. The Physics of Fluid Turbulence. Oxford Science Publication, 1990.

    Google Scholar 

  • Sandham, N. D., Li, Q. Yee, H. C. Entropy splitting for high-order numerical simulation of compressible turbulence. J. Comp. Physics, Vol. 178, 307–322, 2002.

    Article  ADS  MATH  Google Scholar 

  • Spalart, P. R., Direct simulation of a turbulent boundary-layer up to Ree = 1410. J. Fluid Mech., 187: 61–98, 1988.

    Article  ADS  MATH  Google Scholar 

  • Wasistho, B., Spatial direct numerical simulation of compressible boundary layer flow. PhD Thesis, University of Twente, 1997.

    Google Scholar 

  • Yao, Y. F. Sandham, N. D. DNS of turbulent flow over a bump with shock/boundary-layer interactions. 5th Int. Symp. on Eng. Tur. Modelling and Measurements, Spain, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Li, Q., Coleman, G.N. (2004). DNS of an Oblique Shock Wave Impinging upon a Turbulent Boundary Layer. In: Friedrich, R., Geurts, B.J., Métais, O. (eds) Direct and Large-Eddy Simulation V. ERCOFTAC Series, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2313-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2313-2_42

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6575-9

  • Online ISBN: 978-1-4020-2313-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics