Skip to main content

Implicit Subgrid-Scale Modeling by Adaptive Local Deconvolution

  • Conference paper
Direct and Large-Eddy Simulation V

Part of the book series: ERCOFTAC Series ((ERCO,volume 9))

Abstract

In this article we describe a new approach for the construction of implicit subgridscale models for Large-Eddy Simulation based on adaptive local deconvolution. An approximation of the unfiltered solution is obtained from a quasilinear combination of local interpolation polynomials. The effective subgrid-scale model can be determined by a modified differential equation analysis. Model parameters are found by evolutionary optimization. Computational results for the stochastically forced Burgers equation show that the proposed model gives significantly better results than other implicit subgrid-scale models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, N. A. (2001). The role of deconvolution and numerical discretization in subgrid-scale modeling. In Direct and Large-Eddy Simulation IV.

    Google Scholar 

  • Boris, J. P., Grinstein, F. F., Oran, E. S., and Kolbe, R. L. (1992). New insights into large eddy simulation. In Fluid Dynamics Research, volume 10, pages 199–228. North Holland.

    Google Scholar 

  • North Holland. Chekhlov, A. and Yakhot, V. (1995). Kolmogorov turbulence in a random-force driven Burgers equation: anomalous scaling and probability density function. Phys. Rev. E, 52: 5681–5684.

    Article  MathSciNet  ADS  Google Scholar 

  • Fureby, C., Tabor, G., Weller, H. G., and Gosman, A. D. (1997). A comparative study of subgrid scale models in homogeneous isotropic turbulence. Phys. Fluids, 9: 1416–1429.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Geurts, B. (1997). Inverse modeling for large-eddy simulation. Phys. Fluids, 9: 3585–3587.

    Article  ADS  Google Scholar 

  • Geurts, B. and Fröhlich, J. (2002). A framework for prediction accuracy limitations in largeeddy simulation. Phys. Fluids, 14: L41–L44.

    Article  ADS  Google Scholar 

  • Ghosal, S. (1996). An analysis of numerical errors in large-eddy simulations of turbulence. J. Comput. Phys., 125: 187–206.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Harten, A., Engquist, B., Osher, S., and Chakravarthy, S. (1987). Uniformly high order essentially non-oscillatory schemes, III. J. Comp. Phys., 71: 231–275.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Leonard, A. (1974). Energy cascade in large eddy simulations of turbulent fluid flows. Adv. Geophys., 18A: 237–248.

    Article  ADS  Google Scholar 

  • Liu, X.-D., Osher, S., and Chan, T. (1994). Weighted essentially non-oscillatory schemes. J. Comp. Phys., 115: 200–212.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Margolin, L. G. and Rider, W. J. (2002). A rationale for implicit turbulence modeling. Int. J. Numer. Meth. Fluids, 39: 821–841.

    Article  MathSciNet  MATH  Google Scholar 

  • Sagaut, P. (2000). Large-Eddy Simulation for Incompressible Flows. Springer.

    Google Scholar 

  • Schumann, U. (1975). Subgrid scale model for finite-difference simulations of turbulence in plance channels and annuli. J. Comput. Phys., 18: 376–404.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Shu, C.-W. (1988). Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput., 9 (6): 1073–1084.

    Article  MATH  Google Scholar 

  • Shu, C.-W. and Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys., 77: 439–471.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Smagorinsky, J. (1963). General circulation experiments with the primitive equations. Mon. Weath. Rev., 93: 99–164.

    Article  ADS  Google Scholar 

  • Stolz, S., Adams, N. A., and Kleiser, L. (2001). The approximate deconvolution model for compressible flows: decaying turbulence and shock-turbulent-boundary-layer interaction. In Friedrich, R., editor, Large-Eddy simulation of complex transitional and turbulent flows. Kluwer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Adams, N.A. (2004). Implicit Subgrid-Scale Modeling by Adaptive Local Deconvolution. In: Friedrich, R., Geurts, B.J., Métais, O. (eds) Direct and Large-Eddy Simulation V. ERCOFTAC Series, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2313-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2313-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6575-9

  • Online ISBN: 978-1-4020-2313-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics