Skip to main content

A Three-Dimensional Adaptive Wavelet Method for Fluid-Structure Interaction

  • Conference paper

Part of the book series: ERCOFTAC Series ((ERCO,volume 9))

Abstract

An adaptive wavelet collocation method for three-dimensional fluid-structure interaction at large Reynolds numbers is presented. This approach is shown to give accurate results with a reduced number of computational elements. The method is applied to two-dimensional flow past moving and fixed cylinders at Re = 102 and Re = 104, and to three-dimensional flow past a sphere at Re = 500. This is the first three-dimensional calculation of a flow past an obstacle using a dynamically adapted wavelet based approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angot, P. (1999). Analysis of singular perturbations on the brinkman problem for fictitious domain models of viscous flows.Mathematical Methods in the Applied Science, 22: 1395–1412.

    MathSciNet  MATH  Google Scholar 

  2. Angot, P., Bruneau, C.-H., and Fabrie, P. (1999). A penalization method to take into account obstacles in viscous flows.Numerische Mathematik, 81: 497–520.

    MathSciNet  MATH  Google Scholar 

  3. Brandt, A. (1982). Guide to multigrid development. In Hackbusch, W. and Trottenberg, U.,editors, Multigrid methods, volume 960 of Lecture Notes in Mathematics, pages 220–312.Springer-Verlag.

    Google Scholar 

  4. Farge, M., Schneider, K., and Kevlahan, N. K.-R. (1999). Non-gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis.Phys.Fluids, 11: 2187–2201.

    MathSciNet  MATH  Google Scholar 

  5. Griebel, M. and Koster, K. (2002). Multiscale methods for the simulation of turbulent flows. In Hirschel, E.H., editor,DFG/CNRS Workshop, Nice, 2001, Notes on Numerical Fluid Mechanics. Vieweg-Verlag.

    Google Scholar 

  6. Kevlahan, N. and Ghidaglia, J.-M. (2001). Computation of turbulent flow past an array of cylinders using a spectral method with brinkman penalization. Eur. J. Mech./B, 20:333– 350.

    Google Scholar 

  7. Kevlahan, N. and Vasilyev, O. (2003). An adaptive wavelet collocation method for fluid– structure interaction at high reynolds numbers. SIAM J. Sci. Comput. Submitted.

    Google Scholar 

  8. Schneider, K., Kevlahan, N. K.-R., and Farge, M. (1997). Comparison of an adaptive wavelet method and nonlinearly filtered pseudo-spectral methods for two-dimensional turbulence.Theoret. Comput. Fluid Dynamics, 9: 191–206.

    Google Scholar 

  9. Shiels, D., Leonard, A., and Roshko, A. (2001). Flow-induced vibration of a circular cylinder at limiting structural parameters. J. Fluids Structures, 15: 3–21.

    Article  ADS  Google Scholar 

  10. Sweldens, W. (1998). The lifting scheme: A construction of second generation wavelets.SIAMJ. Math. Anal., 29 (2): 511–546.

    MathSciNet  MATH  Google Scholar 

  11. Vasilyev, O. V. (2003). Solving multi-dimensional evolution problems with localized structures using second generation wavelets. Int. J. Comp. Fluid Dyn., Special issue on high-resolution methods in Computational Fluid Dynamics, 17 (2): 151–168.

    MathSciNet  MATH  Google Scholar 

  12. Vasilyev, O. V. and Bowman, C. (2000). Second generation wavelet collocation method for the solution of partial differential equations.J. Comput. Phys., 165: 660–693.

    Google Scholar 

  13. Vasilyev, O. V. and Kevlahan, N. K.-R. (2002). Hybrid wavelet collocation-brinkman penalization method for complex geometry flows.Int. J. Num. Meth. Fluids., 30: 531–538.

    Google Scholar 

  14. Vasilyev, O. V. and Kevlahan, N. K.-R. (2003). An adaptive multilevel wavelet collocation method for elliptic problems. In preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kevlahan, N.KR., Vasilyev, O.V., Goldstein, D., Jay, A. (2004). A Three-Dimensional Adaptive Wavelet Method for Fluid-Structure Interaction. In: Friedrich, R., Geurts, B.J., Métais, O. (eds) Direct and Large-Eddy Simulation V. ERCOFTAC Series, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2313-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2313-2_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6575-9

  • Online ISBN: 978-1-4020-2313-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics