Other Surface Area Methods

  • S. Lowell
  • Joan E. Shields
  • Martin A. Thomas
  • Matthias Thommes
Part of the Particle Technology Series book series (POTS, volume 16)


Because of its simplicity and straightforward applicability, the BET theory is almost universally employed for surface area measurements. However, other methods [e.g., 1, 2] including methods based on small angle x-ray scattering and small neutron scattering [3] have been developed. Whereas the scattering methods cannot be used in routine operations (to date at least), immersion calorimetry and in particular permeability measurements are more frequently used in various applications. We will discuss below some aspects of the latter two methods together with the so-called Harkins Jura relative method, which is based on gas adsorption and is applied in a relative pressure range P/P 0, which is similar as in case of the BET theory (i.e., 0.05 – 0.3). However, no attempt is made to derive and discuss these alternate methods completely, but rather to present their essential features and to indicate how they may be used to calculate surface areas.


Surface Area Measurement Porous Solid Spreading Pressure Linear Flow Velocity Calculate Surface Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rouquerol J., Avnir D., Fairbridge C.W., Everett D.H., Haynes J.H., Pernicone N., Ramsay J.D., Sing K.S.W. and Unger K.K. (1994) Pure Appl. Chem. 66, 1739.CrossRefGoogle Scholar
  2. 2.
    Mikhail R.Sh. and Robens E.Z. (1983) Microstructure and Thermal Analysis of Solid Surfaces, Wiley, Chichester.Google Scholar
  3. 3.
    Smarsly B., Goeltner C., Antonietti M., Ruland W. and Hoinkis E. (2001) J. Phys. Chem B. 105, 831.CrossRefGoogle Scholar
  4. 4.
    Harkins W.D. and Jura G. (1944) J. Am. Chem. Soc. 66, 919.CrossRefGoogle Scholar
  5. 5.
    Langmuir I. (1917) J. Am. Chem. Soc. 39, 1848.CrossRefGoogle Scholar
  6. 6.
    Adamson A.W. (1982) Physical Chemistry of Surfaces, 4th edn, Wiley Interscience, New York, chapter 3.Google Scholar
  7. 7.
    Gibbs J.W. (1931) The Collected Works of J. W. Gibbs, Vol. 1, Longmans Green, New York.Google Scholar
  8. 8.
    Guggenheim E.A. and Adam N.K. (1936) Proc. Roy. Soc. London 154A, 608.CrossRefGoogle Scholar
  9. 9.
    Emmett P.H. (1946) J. Am. Chem. Soc. 68, 1784.CrossRefGoogle Scholar
  10. 10.
    Harkins W.D. and Jura G. (1944) J. Am. Chem. Soc. 66, 1362.CrossRefGoogle Scholar
  11. 11.
    Gregg S.J. and Sing K.S.W. (1967) Adsorption, Surface Area and Porosity, Academic Press, New York, p301.Google Scholar
  12. 12.
    Denoyel R., Fernandez-Colinas J., Grillet Y. and Rouquerol J. (1993) Langmuir 9, 515.CrossRefGoogle Scholar
  13. 13.
    a)Zettlemoyer A.C. and Chessick J. (1959) Adv. Catal. 11, 263;CrossRefGoogle Scholar
  14. b)Zettlemoyer A.C., Young G.J., Chessick J.J. and Healey F.H. (1953) J. Phys. Chem. 57 649.Google Scholar
  15. 14.
    Rouquerol F., Rouquerol J. and Sing K.S.W. (1999) Adsorption by Powders & Porous Solids, Academic Press, London.Google Scholar
  16. 15.
    Gonzales M.T., Sepulveda-Escribano A., Gonzales M.J. and Rodriguez-Reinoso F. (1995) Langmuir 11, 2354.Google Scholar
  17. 16.
    Poiseuille J.L.M. (1846) Inst. France Acad. Sci. 9, 433.Google Scholar
  18. 17.
    Darcy H.P.G. (1856) Les Fontaines Publiques de la Ville de Dijon, Victor Dalmont.Google Scholar
  19. 18.
    Kozeny J. (1927) Ber. Wien Akad. 136A, 271.Google Scholar
  20. 19.
    Carman P.C. (1938) J. Soc. Chem. Ind. London, Trans. Commun. 57, 225.Google Scholar
  21. 20.
    Ridgen P.J. (1954) Road Res. Pap. No. 28 (NMSO).Google Scholar
  22. 21.
    Lea F.M. and Nurse R.W. (1947) Trans. Inst. Chem. Eng. 25, 47.Google Scholar
  23. 22.
    Carman P.C. (1956) Flow of Gases Through Porous Media, Butterworths, London.Google Scholar
  24. 23.
    Allen T. (1990) Particle Size Measurement, 4th edn, Chapman and Hall, London, p615.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • S. Lowell
    • 1
  • Joan E. Shields
    • 2
  • Martin A. Thomas
    • 1
  • Matthias Thommes
    • 1
  1. 1.Quantachrome InstrumentsBoynton BeachUSA
  2. 2.C.W. Post Campus of Long Island UniversityUSA

Personalised recommendations