Skip to main content

Part of the book series: Particle Technology Series ((POTS,volume 16))

Abstract

The forced intrusion of liquid mercury between particles and into pores is routinely employed to characterize a wide range of particulate and solid materials. Most materials can be analyzed so long as the sample can be accommodated in the instrument, which typically restricts the sample dimensions to no more than 2.5cm. Those materials that amalgamate with mercury (zinc and gold for example) cannot be analyzed unless extreme steps are taken to passivate the surface. The exact pore size range that can be measured depends predominantly on the instrument pressure range but also on the contact angle employed in the Washburn equation. The largest pore size that can be determined is limited by the lowest filling pressure attainable and the smallest pore size by the highest pressure achievable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U.S. Department of Labor Occupational Safety Health Administration (OSHA), Safety and Health Topics: Health Guidelines.

    Google Scholar 

  2. NIOSH (1992) Publication No. 92–100.

    Google Scholar 

  3. Penn L.S. and Miller B. (1980) J. Colloid Interface Sci. 77, 574.

    Article  CAS  Google Scholar 

  4. Adam N.K. (1948) Trans. Faraday Soc. 44, 5.

    Google Scholar 

  5. Shields J.E. and Lowell S. (1982) Powder Technol. 31, 227.

    Article  CAS  Google Scholar 

  6. Winslow D.N. (1978) J. Colloid Interface Sci. 67, 42.

    Article  CAS  Google Scholar 

  7. Osipow L.I. (1964) In Surface Chemistry, Reinhold, New York, p233.

    Google Scholar 

  8. Quéré D., Azzopardi M.-J. and Delattre L. (1998) Langmuir 14, 2213.

    Article  Google Scholar 

  9. Smithwick R.W. (1988) J. Coll. Interface Sci. 123, 482.

    Article  CAS  Google Scholar 

  10. Latorre L., Kim J., Lee J., de Guzman P-P., Lee H.J., Nouet P. and Kim C.J. (2002) J. Microelectromech. Systems 11, 302.

    Article  CAS  Google Scholar 

  11. Cebeci O.Z., Al-Noury S.I. and Mirza W.H. (1988) Stud. Surf. Sci. Catal. 39, 611.

    Article  Google Scholar 

  12. Groen J.C., Peffer L.A.A. and Perez-Ramirez J. (2002) Stud. Surf. Sci. Catal. 144, 91.

    Article  CAS  Google Scholar 

  13. Oya M., Takahashi M., Iwata Y., Jono K., Hotta T., Yamamoto H., Washio K., Suda A., Matuo Y., Tanaka K. and Morimoto M. (2002) Am. Ceram. Soc. Bull. 81, 52.

    CAS  Google Scholar 

  14. Hubert C. and Swanson D. (200 1) GSFC Flight Mechanics Symposium, NASA.

    Google Scholar 

  15. Smithwick R.W. (1982) Powder Technol. 33, 201.

    Article  CAS  Google Scholar 

  16. Huisman H.F. and Rasenberg C.J.F.M. (1983/84) Philips Tech. Rev. 41, 260.

    Google Scholar 

  17. Winslow D.N. (1984) Surf. Colloid Sci. 13, 259.

    Article  CAS  Google Scholar 

  18. Cohen M.D., Olek J. and Dolch W.L. (1990) Cem. Concr. Res. 20, 103.

    Article  CAS  Google Scholar 

  19. Simon J., Saffer S. and Kim C.J. (1997) J Microelectromech. Systems 6, 208.

    Article  Google Scholar 

  20. Lowell S. and Shields J.E. (1981) J. Colloid Interface Sci. 80, 192.

    Article  CAS  Google Scholar 

  21. Determining Pore Volume Distribution of Catalysts by Mercury Intrusion Porosimetry, D4284, ASTM International, West Conshohocken, PA, USA.

    Google Scholar 

  22. Lowell S. (1979) US Patent 4, 170, 129.

    Google Scholar 

  23. Svata M. (1971/72) Powder Technol. 5, 345.

    Google Scholar 

  24. Reverberi. A. (1966) Ann. Chim. (Italy) 56, 1552

    Google Scholar 

  25. Thomas M.A. and Coleman N.J. (2001) Colloids Surf. A 187-188, 123.

    Google Scholar 

  26. Alié C., Pirard R. and Pirard J.P. (200 1) J. Non-Cryst. Solids 292, 138.

    Google Scholar 

  27. Pirard R., Sahouli B., Blacher S. and Pirard J.P. (1999) J. Colloid Interface Sci. 217, 216.

    Article  CAS  Google Scholar 

  28. Sellitto M. and Arenzon J.J. (2000) Phys Rev E 62, 7793.

    Article  CAS  Google Scholar 

  29. Edwards S.F. and Grinev D.V. (200 1) In Jamming Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales (Liu A.J. and Nagel S.R., eds.) Taylor Francis, New York.

    Google Scholar 

  30. Coniglio A. and Nicodemi M. (2000) J. Phys.: Condens. Matter 12, 6601.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M. (2004). Mercury Porosimetry: Intra and Inter-Particle Characterization. In: Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Particle Technology Series, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2303-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2303-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6633-6

  • Online ISBN: 978-1-4020-2303-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics