Mercury Porosimetry: Intra and Inter-Particle Characterization

  • S. Lowell
  • Joan E. Shields
  • Martin A. Thomas
  • Matthias Thommes
Part of the Particle Technology Series book series (POTS, volume 16)


The forced intrusion of liquid mercury between particles and into pores is routinely employed to characterize a wide range of particulate and solid materials. Most materials can be analyzed so long as the sample can be accommodated in the instrument, which typically restricts the sample dimensions to no more than 2.5cm. Those materials that amalgamate with mercury (zinc and gold for example) cannot be analyzed unless extreme steps are taken to passivate the surface. The exact pore size range that can be measured depends predominantly on the instrument pressure range but also on the contact angle employed in the Washburn equation. The largest pore size that can be determined is limited by the lowest filling pressure attainable and the smallest pore size by the highest pressure achievable.


Contact Angle Mercury Level Porous Solid Syntactic Foam Worm Gear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U.S. Department of Labor Occupational Safety Health Administration (OSHA), Safety and Health Topics: Health Guidelines.Google Scholar
  2. 2.
    NIOSH (1992) Publication No. 92–100.Google Scholar
  3. 3.
    Penn L.S. and Miller B. (1980) J. Colloid Interface Sci. 77, 574.CrossRefGoogle Scholar
  4. 4.
    Adam N.K. (1948) Trans. Faraday Soc. 44, 5.Google Scholar
  5. 5.
    Shields J.E. and Lowell S. (1982) Powder Technol. 31, 227.CrossRefGoogle Scholar
  6. 6.
    Winslow D.N. (1978) J. Colloid Interface Sci. 67, 42.CrossRefGoogle Scholar
  7. 7.
    Osipow L.I. (1964) In Surface Chemistry, Reinhold, New York, p233.Google Scholar
  8. 8.
    Quéré D., Azzopardi M.-J. and Delattre L. (1998) Langmuir 14, 2213.CrossRefGoogle Scholar
  9. 9.
    Smithwick R.W. (1988) J. Coll. Interface Sci. 123, 482.CrossRefGoogle Scholar
  10. 10.
    Latorre L., Kim J., Lee J., de Guzman P-P., Lee H.J., Nouet P. and Kim C.J. (2002) J. Microelectromech. Systems 11, 302.CrossRefGoogle Scholar
  11. 11.
    Cebeci O.Z., Al-Noury S.I. and Mirza W.H. (1988) Stud. Surf. Sci. Catal. 39, 611.CrossRefGoogle Scholar
  12. 12.
    Groen J.C., Peffer L.A.A. and Perez-Ramirez J. (2002) Stud. Surf. Sci. Catal. 144, 91.CrossRefGoogle Scholar
  13. 13.
    Oya M., Takahashi M., Iwata Y., Jono K., Hotta T., Yamamoto H., Washio K., Suda A., Matuo Y., Tanaka K. and Morimoto M. (2002) Am. Ceram. Soc. Bull. 81, 52.Google Scholar
  14. 14.
    Hubert C. and Swanson D. (200 1) GSFC Flight Mechanics Symposium, NASA.Google Scholar
  15. 15.
    Smithwick R.W. (1982) Powder Technol. 33, 201.CrossRefGoogle Scholar
  16. 16.
    Huisman H.F. and Rasenberg C.J.F.M. (1983/84) Philips Tech. Rev. 41, 260.Google Scholar
  17. 17.
    Winslow D.N. (1984) Surf. Colloid Sci. 13, 259.CrossRefGoogle Scholar
  18. 18.
    Cohen M.D., Olek J. and Dolch W.L. (1990) Cem. Concr. Res. 20, 103.CrossRefGoogle Scholar
  19. 19.
    Simon J., Saffer S. and Kim C.J. (1997) J Microelectromech. Systems 6, 208.CrossRefGoogle Scholar
  20. 20.
    Lowell S. and Shields J.E. (1981) J. Colloid Interface Sci. 80, 192.CrossRefGoogle Scholar
  21. 21.
    Determining Pore Volume Distribution of Catalysts by Mercury Intrusion Porosimetry, D4284, ASTM International, West Conshohocken, PA, USA.Google Scholar
  22. 22.
    Lowell S. (1979) US Patent 4, 170, 129.Google Scholar
  23. 23.
    Svata M. (1971/72) Powder Technol. 5, 345.Google Scholar
  24. 24.
    Reverberi. A. (1966) Ann. Chim. (Italy) 56, 1552Google Scholar
  25. 25.
    Thomas M.A. and Coleman N.J. (2001) Colloids Surf. A 187-188, 123.Google Scholar
  26. 26.
    Alié C., Pirard R. and Pirard J.P. (200 1) J. Non-Cryst. Solids 292, 138.Google Scholar
  27. 27.
    Pirard R., Sahouli B., Blacher S. and Pirard J.P. (1999) J. Colloid Interface Sci. 217, 216.CrossRefGoogle Scholar
  28. 28.
    Sellitto M. and Arenzon J.J. (2000) Phys Rev E 62, 7793.CrossRefGoogle Scholar
  29. 29.
    Edwards S.F. and Grinev D.V. (200 1) In Jamming Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales (Liu A.J. and Nagel S.R., eds.) Taylor Francis, New York.Google Scholar
  30. 30.
    Coniglio A. and Nicodemi M. (2000) J. Phys.: Condens. Matter 12, 6601.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • S. Lowell
    • 1
  • Joan E. Shields
    • 2
  • Martin A. Thomas
    • 1
  • Matthias Thommes
    • 1
  1. 1.Quantachrome InstrumentsBoynton BeachUSA
  2. 2.C.W. Post Campus of Long Island UniversityUSA

Personalised recommendations