Skip to main content

Dynamic Chemisorption: Catalyst Characterization by Flow Techniques

  • Chapter
  • 3583 Accesses

Part of the book series: Particle Technology Series ((POTS,volume 16))

Abstract

Under conditions of dynamic flow, controlled heating rates can be used to acquire characteristic reaction rate curves that can be used to classify, or fingerprint, different catalysts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burwell R.L. and Taylor H.S. (1936) J. Am. Chem. Soc. 58, 1753.

    Article  CAS  Google Scholar 

  2. Moon H-D., Lim T-H. and Lee H-I. (1999) Bull. Korean Chem. Soc. 20, 1413.

    CAS  Google Scholar 

  3. Liang C., Wei Z., Luo M., Ying P., Xin Q. and Li C. (2001) Stud. Surf. Sci. Catal. 138, 283.

    Article  CAS  Google Scholar 

  4. Hoa Z., An L. and Wang H. (2001) Sci. China, Ser. B 44, 596.

    Article  Google Scholar 

  5. Fernández-García M., Martínez-Arias A., Iglesias-Juez A., Belver C., Hungaria A.B., Conesa J.C. and Soria J. (2000) J. Catal. 194, 385.

    Article  Google Scholar 

  6. Kim D.H., Ahn B.J., Koslova A., Kung H.H. and Kung M.C. (2002) ACS Petr. Chem. Div. Preprints 47, 380.

    CAS  Google Scholar 

  7. Adamopoulos O., Zhang Y., Croft M., Zakharchenko I., Tsakalakos T. and Muhammed M. (2001) Mat. Res. Soc. Symp. Proc. 676, Y8111.

    Article  Google Scholar 

  8. Wang S. and Lu G.Q. (1998) Appl. Catal. B 19, 267.

    Article  Google Scholar 

  9. Biscardi J.A., Meitzner G.D. and Iglesia E. (1998) J. Catal. 179, 192.

    Article  CAS  Google Scholar 

  10. Kitiyanan B., Alvarez W.E., Harwell J.H. and Resasco D.E. (2000) Chem. Phys. Lett. 317, 497.

    Article  CAS  Google Scholar 

  11. Herrera J.E. and Resasco D.E. (2003) Chem. Phys. Lett. 376, 302.

    Article  CAS  Google Scholar 

  12. Wang S. and Lu G.Q. (2000) J. Chem. Technol. Biotechnol. 75, 589.

    Article  CAS  Google Scholar 

  13. Altin O., Bock G. and Eser S. (2002) ACS Petr. Chem. Div. Preprints 47, 208.

    CAS  Google Scholar 

  14. Lee H.C., Woo H.C., Ryoo R., Lee K.H. and Lee J.S. (2000) Appl. Catal. A 196, 135.

    Article  CAS  Google Scholar 

  15. Lojewska J. (2001) Stud. Surf. Sci. Catal. 139, 13.

    Article  CAS  Google Scholar 

  16. Nagaoka K., Okamura M. and Aika K. (2001) Catal. Commun. 2, 255.

    Article  CAS  Google Scholar 

  17. McIntosh S., Vohs J.M. and Gorte R.J. (2003) J. Electrochem. Soc. 150, A470.

    Article  CAS  Google Scholar 

  18. Teixeira da Silva V.L.S., Schmal M., Schwartz V. and Oyama S.T. (1998) J. Mat. Res. 13, 1977.

    Google Scholar 

  19. Kim Y.H., Borry R.W. and Iglesia E. (2000) Micropor. Mesopor. Mater. 35–36, 495.

    Article  Google Scholar 

  20. Ding W., Li S., Meitzner G.D. and Iglesia E. (2001) J. Phys. Chem., B 105, 506.

    Article  CAS  Google Scholar 

  21. Ahn B.J., Park J.R. and Chon H. (1989) J. Korean Chem. Soc (Korean) 33, 177.

    CAS  Google Scholar 

  22. Wang. B., Lee C.W., Cai T-X. and Park S.E. (2001) Bull. Korean Chem. Soc. 22, 1056.

    CAS  Google Scholar 

  23. Katada N., Kageyama Y. and Nawa M. (2000) J. Phys. Chem., B 104, 7561.

    Article  CAS  Google Scholar 

  24. Takami M., Yamazaki Y. and Hamada H. (2001) Electrochemistry 69, 98.

    CAS  Google Scholar 

  25. Amin N.A.S. and Angorro D.D. (2003) J. Nat. Gas Chem. 12, 123.

    CAS  Google Scholar 

  26. Pérez-Ramírez J., Mul G., Kapteijn F., Moulijn J.A., Overweg A.R., Doménech A., Ribera A. and Arends I.W.C.E. (2002) J. Catal. 207, 113.

    Article  Google Scholar 

  27. Lü R., Tangbo. H., Wang. Q. and Xiang S. (2003) J. Nat. Gas Chem. 12, 56.

    Google Scholar 

  28. Bi Y. and Dalai A.K. (2003) Can. J. Chem. Eng. 81, 230.

    Article  CAS  Google Scholar 

  29. Sivalingam G., Nagaveni K., Madras G. and Hegde M.S. (2003) Ind. Eng. Chem. Res. 42, 687.

    Article  CAS  Google Scholar 

  30. Hunger B., Hoffmann J., Heitzsch O. and Hunger M. (1990) J. Therm. Anal. 36, 1379.

    Article  CAS  Google Scholar 

  31. Joo O-S., Jung K-D. and Han S-H. (2002) Bull. Korean Chem. Soc. 23, 1103.

    Article  CAS  Google Scholar 

  32. Lin H-e. and Ko A-N. (2000) J. Chinese Chem Soc. 47, 509.

    CAS  Google Scholar 

  33. Wang. B., Lee C.W., Cai T-X. and Park S.E. (2001) Catal. Lett. 76, 219.

    Article  CAS  Google Scholar 

  34. Matsuura H., Katada N. and Niwa M. (2002) Presented at: 2 nd International FEZA Conference, Taormina, Italy, Sept. 1–5.

    Google Scholar 

  35. Singh A.P. and Venkatesan C. (2003) Bull. Catal. Soc. India 2, 43.

    Google Scholar 

  36. Thomas M.A. This work, previously unpublished.

    Google Scholar 

  37. Igi. H., Katada N. and Niwa M. (1997) In Proceedings of the International Symposium on Microporous Crystalline Materials, ZMPC’97, Waseda University, Tokyo, Japan, August 24–27, p 113.

    Google Scholar 

  38. Jentys A. and Lercher J.A. (200 1) In Introduction to Zeolite Science and Practice 2nd Edn. (van Bekkum H. et al, eds.) Elsevier, Amsterdam, p345.

    Google Scholar 

  39. Di Cosimo J.I., Díez V.K., Xu M., Iglesia E. and Apesteguía C.R. (1998) J. Catal. 178, 499.

    Article  Google Scholar 

  40. Sauvet A-L., Fouletier J., Gaillard F. and Primet M. (2002) J. Catal. 209, 25.

    Article  CAS  Google Scholar 

  41. McGee R.C., Bej S.K. and Thompson L.T. (2003) “Characterization of Base Sites on Molybdenum Nitride Catalysts” presented at the 18th NAM ( North American Catalysis Society) Cancun, Mexico.

    Google Scholar 

  42. Bondzie V.A., Parker S.C. and Campbell C.T. (1999) Catal. Lett. 63, 143.

    Article  CAS  Google Scholar 

  43. Huang W.X., Teng J.W. and Bao X.H. (2001) Surf. Interface Anal. 32, 179.

    Article  CAS  Google Scholar 

  44. Rassoul M., Gaillard F., Garbowski E. and Primet M. (2001) J. Catal. 203, 232.

    Article  CAS  Google Scholar 

  45. Yang L., Kresnawahjuesa O. and Gorte R.J. (2001) Catal. Lett. 72, 33.

    Article  CAS  Google Scholar 

  46. Kim Y.D. and Over H. (2001) Top. Catal. 14, 95.

    Article  Google Scholar 

  47. Over H. (2002) Appl. Phys., A 75, 37.

    Article  CAS  Google Scholar 

  48. Heiz U., Sanchez A., Abbet S. and Schneider W-D. (1999) Eur. Phys. J. D 9, 1.

    Article  Google Scholar 

  49. Martínez-Arias A., Fernández-García M., Gálvez O., Coronado J.M., Anderson J.A., Conesa J.C., Soria J. and Munuera G. (2000) J. Catal. 195, 207.

    Article  Google Scholar 

  50. Zhang Z., Jackson J.E. and Miller D.J. (2001) Appl. Catal. A 219, 89.

    Article  CAS  Google Scholar 

  51. Miller J.T., Meyers B.L., Barr M.K., Modica F.S. and Koningsberger D.C. (1996) J. Catal. 159, 41.

    Article  CAS  Google Scholar 

  52. Genger T., Hinrichsen O. and Muhler M. (1999) Catal. Lett. 59, 137.

    Article  CAS  Google Scholar 

  53. Tabatabaei J., Sakakini B.H., Watson M.J. and Waugh K.C. (1999) Catal. Lett. 59, 143.

    Article  CAS  Google Scholar 

  54. Arai M., Nishiyama Y., Masuda T. and Hashimoto K. (1995) Appl. Surf. Sci. 89, 11.

    Article  CAS  Google Scholar 

  55. Chakrapani N., Zhang Y.M., Nayak S.J., Moore J.A., Carroll D.L., Choi Y.Y. and Ajayan P.M. (2003) J. Phys. Chem. B 107, 9308–9311.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M. (2004). Dynamic Chemisorption: Catalyst Characterization by Flow Techniques. In: Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Particle Technology Series, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2303-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2303-3_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6633-6

  • Online ISBN: 978-1-4020-2303-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics