Advertisement

Pathophysiology of acute renal failure

  • M. Bonello
  • R. Ratanarat
  • G. Salvatori
  • H. Oudemans Van-Straaten
  • R. Bellomo
  • C. Ronco

Abstract

Acute renal failure (ARF) affects 5–7% of all hospitalized patients (1–3) and continues to be associated with poor outcomes (4–10). This syndrome is common in the intensive care unit (ICU), with a reported incidence of 1–25% (11, 12) depending on the population being studied and the criteria used to define its presence. Uncomplicated ARF can usually be managed outside the ICU setting and carries a good prognosis, with mortality rates less than 5–10% (2, 13). In contrast, ARF complicating non-renal organ system failure in the ICU setting is associated with mortality rates of 50–70%, which have remained relatively constant over recent decades (9, 14–19). It is generally accepted that ARF in the ICU setting is associated with a high mortality rate (20, 21), and that ICU patients who develop ARF have a higher mortality than those who do not (9, 11, 12, 22–24). Furthermore, evidence exists that ARF is a specific independent risk factor for poor prognosis in critically ill patients (12, 21). Table 1 summarizes some studies reporting the incidence of, and mortality from, ARF in ICU patients.

Keywords

Acute Renal Failure Renal Blood Flow Acute Tubular Necrosis Proximal Tubule Cell Renal Tubular Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albright RC. Acute renal failure: a practical update. Mayo Clin Proc. 2001;76:67–74.PubMedCrossRefGoogle Scholar
  2. 2.
    Hou SH, Bushinsky DA, Wish JB et al. Hospital acquired renal insufficiency: a prospective study. Am J Med. 1983; 74:243–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Nash K, Hafeez A, Hou S. Hospital-acquired renal insufficiency. Am J Kidney Dis. 2002;39:930–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Behrend T, Miller SB. Acute renal failure in the cardiac care unit: etiologies, outcomes, and prognostic factors. Kidney Int. 1999;56:238–43.PubMedCrossRefGoogle Scholar
  5. 5.
    Bennett WM. Posttransplant acute renal failure. Renal Failure. 1997;19:225–6.PubMedCrossRefGoogle Scholar
  6. 6.
    DuBose TD Jr, Warnock DG, Mehta RL et al. Acute renal failure in the 21st century: recommendations for management and outcomes assessment. Am J Kidney Dis. 1997;29:793–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Clermont G, Acker CG, Angus DC, Sirio CA, Pinsky MR, Johnson JP. Renal failure in the ICU: comparison of the impact of acute renal failure and end-stage renal disease on ICU outcomes. Kidney Int. 2002;62:986–96.PubMedCrossRefGoogle Scholar
  8. 8.
    Metcalfe W, Simpson M, Khan IH et al. Acute renal failure requiring renal replacement therapy: incidence and outcome. Q J Med. 2002;95:579–83.CrossRefGoogle Scholar
  9. 9.
    Liaño F, Junco E, Pascual J, Madero R, Verde E. The spectrum of acute renal failure in the intensive care unit compared with that seen in other settings. Madrid Acute Renal Failure Study Group. Kidney Int. 1998;66:516–24.Google Scholar
  10. 10.
    Pruchnicki MC, Dasta JF. Acute renal failure in hospitalized patients: Part I. Ann Pharmacother. 2002;36:1261–7.PubMedCrossRefGoogle Scholar
  11. 11.
    De Mendonca A, Vincent J-L, Suter PM et al. Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intens Care Med. 2000;26:915–21.CrossRefGoogle Scholar
  12. 12.
    Chertow GM, Levy EM, Hammermeister KE, Grover F, Daley J. Independent association between acute renal failure and mortality following cardiac surgery. Am J Med. 1998;104: 343–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Shusterman N, Strom BL, Murray TG, Morrison G, West SL, Maislin G. Risk factors and outcome of hospital-acquired acute renal failure. Am J Med. 1987;83:65–71.PubMedCrossRefGoogle Scholar
  14. 14.
    Silvester W, Bellomo R, Cole L. Epidemiology, management, and outcome of severe acute renal failure of critical illness in Australia. Crit Care Med. 2001;29:1910–15.PubMedCrossRefGoogle Scholar
  15. 15.
    Vincent JL. Incidence of acute renal failure in the intensive care unit. Contrib Nephrol. 2001;132:1–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Liaño F, Pascual J. Outcomes in acute renal failure. Semin Nephrol. 1998;18:541–50.PubMedGoogle Scholar
  17. 17.
    Abernethy VE, Lieberthal W. Acute renal failure in the critically ill patient. Crit Care Clin. 2002;18:203–22.PubMedCrossRefGoogle Scholar
  18. 18.
    Bates DW, Su L, Yu DT et al. Correlates of acute renal failure in patients receiving parenteral amphotericin B. Kidney Int. 2001;60:1452–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Brivet FG, Kleinknecht DJ, Loirat P, Landais PJ. Acute renal failure in intensive care units: causes, outcome, and prognostic factors of hospital mortality — a prospective, multicenter study. French Study Group on Acute Renal Failure. Crit Care Med. 1996;24:192–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Butkus DE. Persistent high motality in acute renal failure. Arch Intern Med. 1983;143:209–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Chertow GM, Christiansen CL, Cleary PD, Munro C, Lazarus JM. Prognostic stratification in critically ill patients with acute renal failure requiring dialysis. Arch Intern Med. 1995;155:1505–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Menashe PI, Ross SA, Gottlieb JE. Acquired renal insufficiency in critically ill patient. Crit Care Med. 1988;16:1106–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Mangano CM, Diamondstone LS, Ramsay JG, Aggarral A, Herskowitz A, Mangano DT. Renal dysfunction after myocardial revascularization: risk factors, adverse outcome, and hospital resource utilization. Ann Intern Med. 1998; 128:194–203.PubMedCrossRefGoogle Scholar
  24. 24.
    Vivino G, Antonelli M, Moro ML et al. Risk factors for acute renal failure in trauma patients. Intens Care Med. 1998;24:808–14.CrossRefGoogle Scholar
  25. 25.
    Wiecek A, Zeier M, Ritz E. Role of infection in the genesis of acute renal failure. Nephrol Dial Transplant. 1994;9(Suppl. 4): 40–4.PubMedGoogle Scholar
  26. 26.
    Ward MM. Factors predictive of acute renal failure in rhabdomyolysis. Arch Intern Med. 1988;148:1553–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Myers BD, Moran SM. Hemodynamically mediated acute renal failure. N Engl J Med. 1986;314:97–100.PubMedCrossRefGoogle Scholar
  28. 28.
    Lieberthal W, Nigam SK. Acute renal failure. II. Experimental models of acute renal failure: imperfect but indispensable. Am J Physiol Renal Physiol. 2000;278:11–12.Google Scholar
  29. 29.
    Rosen S, Heyman SN. Difficulties in understanding human ‘acute tubular necrosis’: limited data and flawed animal models. Kidney Int. 2001;60:1220–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Ueda N, Kaushal GP, Shah SV. Apoptotic mechanisms in acute renal failure. Am J Med. 2000;108:403–15.PubMedCrossRefGoogle Scholar
  31. 31.
    Heyman SN, Lieberthal W, Rogiers P, Bonventre JV. Animal models of acute tubular necrosis. Curr Opin Crit Care. 2002;8:526–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Sutton TA, Fisher CJ, Molitoris BA. Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int. 2002;62:1539–49.PubMedCrossRefGoogle Scholar
  33. 33.
    Wang S, Hirschberg R. Role of growth factors in acute renal failure. Nephrol Dial Transplant. 1997;12:1560–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Meyer M, Richter R, Forssmann WG. Urodilatin, a natriuretic peptide with clinical implications. Eur J Med Res. 1998;3:103–10.PubMedGoogle Scholar
  35. 35.
    Lieberthal W. Biology of ischemic and toxic renal tubular cell injury: role of nitric oxide and the inflammatory response. Curr Opin Nephrol Hypertens. 1998;7:289–95.PubMedCrossRefGoogle Scholar
  36. 36.
    Venkataram R, Kellum JA. The role of diuretic agents in the management of acute renal failure. Contrib Nephrol. 2001; 132:158–70.PubMedCrossRefGoogle Scholar
  37. 37.
    Solomon R, Werner C, Mann D, D ’Elia J, Silva P. Effects of saline, mannitol, and furosemide to prevent acute decreases in renal function induced by radiocontrast agents. N Engl J Med. 1994;331:1416–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Kellum JA, Decker JM. Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med. 2001;29:1526–31.PubMedCrossRefGoogle Scholar
  39. 39.
    Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Low-dose dopamine in patients with early renal dysfunction: a placebo controlled randomized trial. Lancet. 2000;356:2139–43.CrossRefGoogle Scholar
  40. 40.
    Allgren RL, Marbury TC, Rahman SN et al. Anaritide in acute tubular necrosis. Auriculin Anaritide Acute Renal Failure Study Group. N Engl J Med. 1997;336:828–34.PubMedCrossRefGoogle Scholar
  41. 41.
    Lewis J, Salem MM, Chertow GM et al. Atrial natriuretic factor in oliguric acute renal failure. Anaritide Acute Renal Failure Study Group. Am J Kidney Dis. 2000;36:767–74.PubMedCrossRefGoogle Scholar
  42. 42.
    Hirschberg R, Kopple J, Lipsett P et al. Multicenter clinical trial of recombinant human insulin-like growth factor I in patients with acute renal failure. Kidney Int. 1999;55:2423–32.PubMedCrossRefGoogle Scholar
  43. 43.
    Wang A, Holcslaw T, Bashore TM e al. Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism. Kidney Int. 2000;57:1675–80.PubMedCrossRefGoogle Scholar
  44. 44.
    Kellum JA, Levin N, Bouman CSC, Lameire N. Developing a consensus classification system for acute renal failure. Curr Opin Crit Care. 2002;8:509–14.PubMedCrossRefGoogle Scholar
  45. 45.
    Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P; ADQI Workgroup. The second international consensus conference of the Acute Dialysis Quality Initiative Group: Defining acute renal failure, outcome measures, experimental models, fluid therapy and information technology needs. Kidney Int. 2004 (In press).Google Scholar
  46. 46.
    Bellomo R, Kellum JA, Ronco C. Acute renal failure: time for consensus. Intens Care Med. 2001;27:1685–8.CrossRefGoogle Scholar
  47. 47.
    Vella K, Goldfrad C, Rowan K et al. Use of consensus development to establish national research priorities in critical care. Br Med J. 2000;320:976–80.CrossRefGoogle Scholar
  48. 48.
    Erley CM, Brader BD, Berger ED et al. Plasma clearance of iodine contrast media as a measure of glomerular filtration rate in critically ill patients. Crit Care Med. 2001;29: 1544–50.PubMedCrossRefGoogle Scholar
  49. 49.
    Doolan PD, Alpen EL, Theil GB. A clinical appraisal of the plasma concentration and endogenous clearance of creatinine. Am J Med. 1962;32:65–72.PubMedCrossRefGoogle Scholar
  50. 50.
    Kim KE, Onesti G, Ramirez O. Creatinine clearance in renal disease. A reappraisal. Br Med J. 1969;14:11–19.CrossRefGoogle Scholar
  51. 51.
    Fliser D, Franek E, Joest M et al. Renal function in the elderly: impact of hypertension and cardiac function. Kidney Int. 1997;51:1196–204.PubMedCrossRefGoogle Scholar
  52. 52.
    National Kidney Foundation. K/DOQI Clinical Practice Guidelines for Chronic Kidney Disease; Evaluation, Classification and Stratification. Am J Kidney Dis. 2002;39:576–92.Google Scholar
  53. 53.
    Rose BD. Pathophysiology of Renal Disease, 2nd edn. New York: McGraw-Hill, 1987:41.Google Scholar
  54. 54.
    Thadhani R, Pascual M, Bonventre JV. Acute renal failure. N Engl J Med. 1996;334:1448–60.PubMedCrossRefGoogle Scholar
  55. 55.
    Brezis M, Rosen S. Hypoxia of the renal medulla — its implications for disease. N Engl J Med. 2003;332:647–55.Google Scholar
  56. 56.
    Groeneveld AB. Pathogenesis of acute renal failure during sepsis. Nephrol Dial Transplant. 1994;9(Suppl. 4): 47–51.PubMedGoogle Scholar
  57. 57.
    Badr KF, Ichinawa I. Prerenal failure: a deleterious shift from renal compensation to decompensation. N Engl J Med. 1988;319:623–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Cohen RI, Hassell AM, Marzouk K, Marini C, Liu SF, Scharf SM. Renal effects of nitric oxide in endotoxemia. Am J Respir Crit Care Med. 2001;15:1890–5.CrossRefGoogle Scholar
  59. 59.
    Ameire NH, Matthys E, Kesteloot D, Waterloos MA. Effect of a serotonin blocking agent on renal hemodynamics in the normal rat. Kidney Int. 1990;38:823–9.CrossRefGoogle Scholar
  60. 60.
    Conger J. Hemodynamic factors in acute renal failure. Adv Ren Replace Ther. 1997;4(Suppl. 1):25–37.PubMedGoogle Scholar
  61. 61.
    Tucker BJ, Mundy CA, Blantz RC. Adrenergic and angiotensin II influences on renal vascular tone in chronic sodium depletion. Am J Physiol. 1987;252:F811–18.Google Scholar
  62. 62.
    Erley CM, Heyne N, Rossmeier S, Vogel T, Risler T, Osswald H. Adenosine and extracellular volume in radiocontrast media-induced nephropathy. Kidney Int Suppl. 1998:67:S192–4.CrossRefGoogle Scholar
  63. 63.
    Smith JA, Whitaker EM, Bowmer CJ, Yates MS. Differential expression of renal adenosine A (1) receptors induced by acute renal failure. Biochem Pharmacol. 2000;59:727–32.PubMedCrossRefGoogle Scholar
  64. 64.
    Lieberthal W. Biology of acute renal failure: therapeutic implications. Kidney Int. 1997;52:1102–15.CrossRefGoogle Scholar
  65. 65.
    Kohan DE. Endothelins in the kidney: physiology and pathophysiology. Am J Kidney Dis. 1993;22:493–510.PubMedGoogle Scholar
  66. 66.
    Imig JD. Eicosanoid regulation of the renal vasculature. Am J Physiol Renal Physiol. 2000;279:F965–81.Google Scholar
  67. 67.
    Mason J, Welsch J, Torhorst J. The contribution of vascular obstruction to the functional defect that follows renal ischemia. Kidney Int. 1987;31:65–71.PubMedCrossRefGoogle Scholar
  68. 68.
    Hellberg POA, Källskog O, Wolgast M. Red cell trapping and postischemic renal blood flow. Differences between the cortex, outer and inner medulla. Kidney Int. 1991;40:625–31.PubMedCrossRefGoogle Scholar
  69. 69.
    Brady HR. Leukocyte adhesion molecules and kidney diseases. Kidney Int. 1994;45:1285–300.PubMedCrossRefGoogle Scholar
  70. 70.
    Espinosa G, Lopez Farré A, Cernadas MR et al. Role of endothelin in the pathophysiology of renal ischemiareperfusion in normal rabbits. Kidney Int. 1996;50:776–82.PubMedCrossRefGoogle Scholar
  71. 71.
    Lee HT, Emala CW. Protective effects of renal ischemic preconditioning and adenosine pretreatment: role of A(1) and A(3) receptors. Am J Physiol Renal Physiol. 2000; 278:F380–7.Google Scholar
  72. 72.
    Johnson JP, Rokow MD. Sepsis or ischemia in experimental acute renal failure: what have we learned? New Horizons. 1995;3:608–61.PubMedGoogle Scholar
  73. 73.
    Lote CJ, Harper L, Savage CO. Mechanisms of acute renal failure. Br J Anaesth. 1996;77:82–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol. 2003;14:2199–210.PubMedCrossRefGoogle Scholar
  75. 75.
    Rabb H, O ’Meara YM, Maderna P, Coleman P, Brady HR. Leukocytes, cell adhesion molecules and ischemic acute renal failure. Kidney Int. 1997;51:1462–8.CrossRefGoogle Scholar
  76. 76.
    Baliga R, Ueda N, Walker PD, Shah SV. Oxidant mechanisms in toxic acute renal failure. Drug Metab Rev. 1999; 31:971–97.PubMedCrossRefGoogle Scholar
  77. 77.
    Lopez-Novoa JM. Potential role of platelet activating factor in acute renal failure. Kidney Int. 1999;55:1672–82.PubMedCrossRefGoogle Scholar
  78. 78.
    Linas SL, Shanley PF, Whittenburg D, Berger E, Repine JE. Neutrophils accentuate ischemia-reperfusion injury in isolated perfused rat kidneys. Am J Physiol. 1988;255:F728–35.Google Scholar
  79. 79.
    Willinger CC, Schramek H, Pfaller W. Tissue distribution of neutrophils in postischemic acute renal failure. Virchows Arch B. 1992;62:237–43.PubMedCrossRefGoogle Scholar
  80. 80.
    Heinzelmann M, Mercer-Jones MA, Passmore JC. Neutrophils and renal failure. Am J Kidney Dis. 1999;34:384–99.PubMedCrossRefGoogle Scholar
  81. 81.
    Molitoris BA, Marrs J. The role of cell adhesion molecules in ischemic acute renal failure. Am J Med. 1999;106:583–92.PubMedCrossRefGoogle Scholar
  82. 82.
    Rahman A, Kefer J, Bando M, Niles WD, Malik AB. E-selectin expression in human endothelial cells by TNFalpha-induced oxidant generation and NF-KB activation. Am J Physiol. 1998;275:L533–44.Google Scholar
  83. 83.
    Kelly KJ, Williams WW Jr, Colvin RB et al. Intercellular adhesion molecule-1 deficient mice are protected against renal ischemia. J Clin Invest. 1996;97:1056–63.PubMedCrossRefGoogle Scholar
  84. 84.
    Donnahoo KK, Meng X, Ayala A, Cain MP, Harken AH, Meldrum DR. Early kidney TNF-alpha expression mediates neutrophil infiltration and injury after renal ischemiareperfusion. Am J Physiol. 1999;277:R922–9.Google Scholar
  85. 85.
    Donnahoo KK, Meldrum DR, Shenkar R, Chung CS, Abraham E, Harken AH. Early renal ischemia, with or without reperfusion, activates NfkappaB and increases TNFalpha bioactivity in the kidney. J Urol. 2000;163:1328–32.PubMedCrossRefGoogle Scholar
  86. 86.
    Homeister JW, Satoh PS, Kilgore KS, Lucchesi BR. Soluble complement receptor type 1 prevents human complementmediated damage of the rabbit isolated heart. J Immunol. 1993;150:1055–64.PubMedGoogle Scholar
  87. 87.
    Bonventre JV, Force T. Mitogen-activated protein kinases and trancriptional responses in renal injury and repair. Curr Opin Nephrol Hypertens. 1998;7:425–33.PubMedCrossRefGoogle Scholar
  88. 88.
    Sheridan AM, Bonventre JV. Pathophysiology of ischemic acute renal failure, Vol. 132: Blood Purification in Intensive Care. Contributions in Nephrology. Basel: Karger, 2001:7–21.CrossRefGoogle Scholar
  89. 89.
    Yoshioka T, Fogo A, Beckman JK. Reduced activity of antioxidant enzymes underlies contrast media-induced renal injury in volume depletion. Kidney Int. 1992;41:1008–15.PubMedCrossRefGoogle Scholar
  90. 90.
    Wangsiripaisan A, Gengaro PE, Nemenoff RA, Ling H, Edelstein CL, Schrier RW. Effect of nitric oxide donors on renal tubular epithelial cell-matrix adhesion. Kidney Int. 1999;55:2281–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Bonventre JV. Mechanisms of ischemic acute renal faiure. Kidney Int. 1993;43:1160–78.PubMedCrossRefGoogle Scholar
  92. 92.
    Vasco KA, Dewall RA, Riley AM. Effect of allopurinol in renal ischemia. Surgery. 1972;71:787–90.Google Scholar
  93. 93.
    Paller MS: Renal work, glutathione and susceptibility to free radical-mediated postischemic injury. Kidney Int. 1988; 33:843–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Berger NA. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res. 1985;101:4–15.PubMedCrossRefGoogle Scholar
  95. 95.
    Heller B, Wang ZQ, Wagner EF et al. Inactivation of the poly(ADP-ribose)polymerase gene affects oxygen radical and nitric oxide toxicity in islet cells. J Biol Chem. 1995; 270:11176–80.PubMedCrossRefGoogle Scholar
  96. 96.
    Thiermermann C, Bowes J, Myint FP, Vane JR. Inhibition of the activity of poly(ADP-ribose) synthetase reduces ischemia-reperfusion injury in the heart and skeletal muscle. Proc Natl Acad Sci USA. 1997;94:679–83.CrossRefGoogle Scholar
  97. 97.
    Watson AJ, Askew JN, Benson RS. Poly(adenosine diphosphate ribose) polymerase inhibition prevents necrosis induced by H202 but not apoptosis. Gastroenterology. 1995;109:472–82.PubMedCrossRefGoogle Scholar
  98. 98.
    Chatterjee PK, Cuzzocrea S, Thiemermann C. Inhibitors of poly(ADP-ribose)synthetase protect rat proximal tubules against oxidant stress. Kidney Int. 1999;56:973–84.PubMedCrossRefGoogle Scholar
  99. 99.
    Chatterjee PK, Zacharowski K, Cuzzocrea S, Otto M, Thiemermann C. Inhibitors of poly(ADP-ribose) synthetase reduce renal ischemia-reperfusion injury in the anesthetized rat in vivo. FASEB J. 2000;14:641–51.PubMedGoogle Scholar
  100. 100.
    Nakamura H, Nemenoff RA, Gronich JH, Bonventre JV. Subcellular characteristics of phospholipase A2 activity in the rat kidney. Enhanced cytosolic, mitochondrial, and microsomal phospholipase A2 enzymatic activity after renal ischemia and reperfusion. J Clin Invest. 1991;87:1810–18.PubMedCrossRefGoogle Scholar
  101. 101.
    Portilla D, Mandel LJ, Bar-Sagi D, Millington DS. Anoxia induces phospholipase A2 activation in rabbit renal proximal tubules. Am J Physiol. 1992;262:F354–60.Google Scholar
  102. 102.
    Venkatachalam MA, Patel YJ, Kreisberg JI, Weinberg JM. Energy thresholds that determine membrane integrity and injury in a renal epithelial cell line (LLC-PK1). Relationships to phospholipid degradation and unesterified fatty acid accumulation. J Clin Invest. 1988;81:745–58.PubMedCrossRefGoogle Scholar
  103. 103.
    Sheridan AM, Schwartz JH, Kroshian VM et al. Renal mouse proximal tubular cells are more susceptible than MDCK cells to chemical anoxia. Am J Physiol. 1993; 265:F342–50.Google Scholar
  104. 104.
    Panadilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am J Physiol Renal Physiol. 2003;284:F608–37.Google Scholar
  105. 105.
    Bonegio R, Lieberthal W. Role of apoptosis in the pathogenesis of acute renal failure. Curr Opin Nephrol Hypertens. 2002;11:301–8.PubMedCrossRefGoogle Scholar
  106. 106.
    Saikumar P, Venkatachalam MA. Role of apoptosis in hypoxic/ischemic damage in the kidney. Semin Nephrol. 2003;23:511–21.PubMedCrossRefGoogle Scholar
  107. 107.
    Groeneveld AB. Pathogenesis of acute renal failure during sepsis. Nephrol Dial Transplant. 1994;9(Suppl. 4):47–51.PubMedGoogle Scholar
  108. 108.
    Wan L, Bellomo R, Di Giantomasso D, Ronco C. The pathogenesis of septic acute renal failure. Curr Opin Crit Care. 2003;9:496–502.PubMedCrossRefGoogle Scholar
  109. 109.
    Racusen LC, Fivush BA, Li YL et al. Dissociation of tubular cell detachment and tubular cell death in clinical and experimental acute tubular necrosis. Lab Invest. 1991;64:546–56.PubMedGoogle Scholar
  110. 110.
    Fanning AS, Mitic LL, Anderson JM. Transmembrane proteins in the tight junction barrier. J Am Soc Nephrol. 1999:10:1337–45.PubMedGoogle Scholar
  111. 111.
    Claude P. Morphologic factors influencing transepithelial permeability: a model for resistance of the zonula occludens. J Membrane Biol. 1978;39:219–32.CrossRefGoogle Scholar
  112. 112.
    Schwartz JH, Shih T, Menza SA, Lieberthal W. ATP depletion increases tyrosine phosphorylation of beta-catenin and plakoglobin in renal tubular cells. J Am Soc Nephrol. 1999;10:2297–305.PubMedGoogle Scholar
  113. 113.
    Brenner M, Schaer GL, Mallory DL, Suffredini AF, Parrillo JE. Detection of renal blood flow abnormalities in septic and critically ill patients using a newly designed indwelling thermodiluition renal vein catheter. Chest. 1990;98:170–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Zuk A, Bonventre JV, Brown D, Matlin KS. Polarity, integrin and extracellular matrix dynamics in the postischemic rat kidney. Am J Physiol. 1998;275:C711–31.Google Scholar
  115. 115.
    Goligorsky MS, Lieberthal W, Racusen L, Simon EE. Integrin receptors in renal tubular epithelium: New insights into pathophysiology of acute renal failure (editorial). Am J Physiol. 1993;264:F1–8.Google Scholar
  116. 116.
    Kroshin VM, Sheridan AM, Lieberthal W. Functional and cytoskeletal changes induced by sublethal injury in proximal tubular epithelial cells. Am J Physiol. 1994;266:F21–30.Google Scholar
  117. 117.
    Noiri E, Gailit J, Sheth D et al. Cyclic RGD peptides ameliorate ischemic acute renal failure in rats. Kidney Int. 1994;46:1050–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Justo P, Lorz C, Sanz A, Egido J, Ortiz A. Intracellular mechanisms of cyclosporin A-induced tubular cell apoptosis. J Am Soc Nephrol. 2003;14:3072–80.PubMedCrossRefGoogle Scholar
  119. 119.
    Kim YK, Choi TR, Kwon CH, Kim JH, Woo JS, Jung JS. Beneficial effect of pentoxifylline on cisplatin-induced acute renal failure in rabbits. Ren Fail. 2003;25:909–22.PubMedCrossRefGoogle Scholar
  120. 120.
    Liu KD. Molecular mechanisms of recovery from acute renal failure. Crit Care Med. 2003;31(8 Suppl.):S572–81.CrossRefGoogle Scholar
  121. 121.
    Daemen MARC, Van ’t Veer C, Denecker G et al. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. Circulation. 1999;104:541–9.Google Scholar
  122. 122.
    Rana A, Sathyanarayana P, Lieberthal W. Role of apoptosis of renal tubular cells in acute renal failure: therapeutic implications. Apoptosis. 2001;6:83–102.PubMedCrossRefGoogle Scholar
  123. 123.
    Moran SM, Myers BD. Pathophysiology of protracted acute renal failure in man. J Clin Invest. 1985;76:1440–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Lieberthal W. Biology of acute renal failure: therapeutic implications. Kidney. 1997;52:1102–15.CrossRefGoogle Scholar
  125. 125.
    Kribben A, Wiedere ED, Wetzels JFM et al. Evidence for role of cytosolic free calcium in hypoxia-induced proximal tubule injury. J Clin Invest. 1994;93:1922–9.PubMedCrossRefGoogle Scholar
  126. 126.
    Edelstein CL, Yaqoob MM, Alkhunaizi AM et al. Modulation of hypoxia-induced calpain activity in rat renal proximal tubules. Kidney Int. 1996;50:1150–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Ichimura T, Bonventre JV. Growth factors, signaling, and renal injury and repair. In: Molitoris BA, Finn WF, Acute Renal Failure. New York, Harcourt Health Sciences, 2000:183–9.Google Scholar
  128. 128.
    Nadasdy T, Laszik Z, Blick KE et al. Human acute tubular necrosis: A lectin and immunohistochemical study. Hum Pathol. 1995;26:230–9.PubMedCrossRefGoogle Scholar
  129. 129.
    Witzgall R, Brown D, Schwartz C, Bonventre JV. Localization of proliferating cell nuclear antigen, vimentin, c-fos, and clusterin in the post-ischemic kidney. Evidence for a heterogeneous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J Clin Invest. 1994;93:2175–88.PubMedCrossRefGoogle Scholar
  130. 130.
    John C. Marshall. Inflammation, coagulopathy, and pathogenesis of multiple organ dysfunction syndrome. Crit Care Med. 2001;29(Suppl. 9):S99–106.Google Scholar
  131. 131.
    Jorres A. Acute renal failure. Extracorporeal treatment strategies. Minerva Med. 2002;93:329–4.PubMedGoogle Scholar
  132. 132.
    Mehta R, Clark WC, Schetz M. Techniques for assessing and achieving fluid balance in acute renal failure. Curr Opin Crit Care. 2002;8:535–43.PubMedCrossRefGoogle Scholar
  133. 133.
    Martin C, Papazian L, Perrin G, Saux P, Gouin F. Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest. 1993;103:1826–31.PubMedCrossRefGoogle Scholar
  134. 134.
    Bellomo R, DiGiantomasso D. Noradrenaline and the kidney: friends or foes. Crit Care. 2001;5:294–8.PubMedCrossRefGoogle Scholar
  135. 135.
    Ravikant T, Lucas CE. Renal blood flow distribution in septic hyperdynamic pigs. J Surg Res. 1977;22:294–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Brenner M, Schaer GL, Mallory DL, Suffredini AF, Parrillo JE. Detection of renal blood flow abnormalities in septic and critically ill patients using a newly designed indwelling thermodilution renal vein catheter. Chest. 1990;98:170–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Di Giantomasso D, Morimatsu H, May CN, Bellomo R. Intra-renal blood flow distribution in hyperdynamic septic shock: effect of norepinephrine. Crit Care Med. 2003;31: 2509–13.PubMedCrossRefGoogle Scholar
  138. 138.
    Knotek M, Rogachev B, Wang W et al. Endotoxemic renal failure in mice: role of tumor necrosis factor independent of inducible nitric oxide synthase. Kidney Int. 2001;59: 2243–7.PubMedGoogle Scholar
  139. 139.
    Liberthal W, Levine JS. Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury. Am J Physiol, 1996;271:F477–88.Google Scholar
  140. 140.
    Jo SK, Cha DR, Cho WY et al. Inflammatory cytokines and lipopolysaccharide induce Fas-mediated apoptosis in renal tubular cells. Nephron. 2002;91:406–15.PubMedCrossRefGoogle Scholar
  141. 141.
    Rodriguez-Wilhelmi P, Montes R, Matsukawa A et al. Tumour necrosis factor-alpha inhibition reduces CXCL-8 levels but fails to prevent fibrin generation and does not improve outcome in a rabbit model of endotoxic shock. J Lab Clin Med. 2003;141:257–64.PubMedCrossRefGoogle Scholar
  142. 142.
    Bernard GR, Vincent J-L, Laterre R-F et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344:699–709.PubMedCrossRefGoogle Scholar
  143. 143.
    Joyce DE, Gelbert L, Ciaccia A et al. Gene expression profile of antithrombotic protein C defines new mechanisms modulating inflammation and apoptosis. J Biol Chem. 2001; 276:11199–203.PubMedCrossRefGoogle Scholar
  144. 144.
    Cheng T, Liu D, Griffin JH et al. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med. 2003;9: 338–42.PubMedCrossRefGoogle Scholar
  145. 145.
    Fauvel H, Marchetti P, Chopin C, Formastecher P, Neviere R. Differential effects of caspase inhibitors on endotoxininduced myocardial dysfunction and heart apoptosis. Am J Physiol Heart Circ Physiol. 2001;280:H1608–14.Google Scholar
  146. 146.
    Neviere R, Fauvel H, Chopin C, Formstecher P, Marchetti P. Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. Am J Respir Crit Care Med. 2001;163:218–25.PubMedCrossRefGoogle Scholar
  147. 147.
    Cauwels A, Janssen B, Waeytens A, Cuvelier C, Brouckaert P. Caspase inhibition causes hyperacute tumour necrosis factor-induced shock via oxidative stress and phospholipase A2. Nat Immunol. 2003;4:387–93.PubMedCrossRefGoogle Scholar
  148. 148.
    Van den Berghe G, Wouters P, Weekers F et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001; 345:1359–67.PubMedCrossRefGoogle Scholar
  149. 149.
    Hansen TK, Thiel S, Wouters PJ et al. Intensive insulin therapy exerts anti-inflammatory effects in critically ill patients and counteracts the adverse effect of low mannose-binding lectin levels. J Clin Endocrinol Metab. 2003;88:1082–8.PubMedCrossRefGoogle Scholar
  150. 150.
    Augustin R, Pocar P, Wrenzycki C, Niemann H, Fischer B. Mitogenic and anti-apoptotic activity of insulin on bovine embryos produced in vitro. Reproduction. 2003;126:91–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Allen DA, Harwood S, Varagunam M, Raftery MJ, Yaqoob MM. High glucose-induced oxidative stress causes apoptosis in proximal tubular epithelial cells and is mediated by multiple caspases. FASEB J. 2003;17:908–10.PubMedGoogle Scholar
  152. 152.
    The ARDS Network. Ventilation with low tidal volumes as compared to traditional tidal volumes for acute lung injury and acute respiratory distress syndrome. N Engl J Med. 2000:342:1301–8.Google Scholar
  153. 153.
    Imai Y, Parodo J, Kajikawa O et al. Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. J Am Med Assoc. 2003;289: 2104–12.CrossRefGoogle Scholar
  154. 154.
    Birck R, Krzossok S, Markowetz F et al. Acetylcysteine for prevention of contrast nephropathy: meta-analysis. Lancet. 2003;362:598–603.PubMedCrossRefGoogle Scholar
  155. 155.
    Ozdulger A, Cinel I, Koksel O et al. The protective effect of Nacetylcysteine on apoptotic lung injury in a cecal ligation and puncture-induced sepsis model. Shock. 2003;19:366–72.PubMedCrossRefGoogle Scholar
  156. 156.
    Gupta N, Ahmed I, Nissel-Horowitz S, Patel D, Mehrotra B. Intravenous gammaglobulin-associated acute renal failure. Am J Hematol. 2001;66:151–2.PubMedCrossRefGoogle Scholar
  157. 157.
    Schortgen F, Lacherade JC, Bruneel F et al. Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet. 2001;357:911–16.PubMedCrossRefGoogle Scholar
  158. 158.
    Gupta N, Ahmed I, Nissel-Horowitz S, Patel D, Mehrotra B. Intravenous gammaglobulin-associated acute renal failure. Am J Hematol. 2001;66:151–2.PubMedCrossRefGoogle Scholar
  159. 159.
    Hojs R, Ekart R, Sinkovic A, Hojs-Fabjan T. Rhabdomyolysis and acute renal failure in intensive care unit. Renal Failure. 1999;21:675–84.PubMedCrossRefGoogle Scholar
  160. 160.
    Holt S, Moore K. Pathogenesis of renal failure in rhabdomyolysis: the role of myoglobin. Exp Nephrol. 2000;8:72–6.PubMedCrossRefGoogle Scholar
  161. 161.
    Morcos SK, Thomsen HS, Webb JA. Contrast-mediainduced nephrotoxicity: a consensus report. Contrast Media Safety Committee, European Society of Urogenital Radiology (ESUR). Eur Radiol. 1999;9:1602–13.PubMedCrossRefGoogle Scholar
  162. 162.
    Soma VR, Cavusoglu E, Vidhun R, Frishman WH, Sharma SK. Contrast-associated nephropathy. Heart Dis. 2002;4:372–9.PubMedCrossRefGoogle Scholar
  163. 163.
    Murphy ME, Tublin ME, Li S. Influence of contrast media on the response of rat renal arteries to endothelin and nitric oxide: influence of contrast media. Invest Radiol. 1998;33: 356–65.PubMedCrossRefGoogle Scholar
  164. 164.
    Zager RA, Johnson AC, Hanson SY. Radiographic contrast media-induced tubular injury: evaluation of oxidant stress and plasma membrane integrity. Kidney Int. 2003;64: 128–39.PubMedCrossRefGoogle Scholar
  165. 165.
    Rich MW, Crecelius CA. Incidence, risk factors, and clinical course of acute renal insufficiency after cardiac catheterization in patients 70 years of age or older. A prospective study. Arch Intern Med. 1990;150:1237–42.CrossRefGoogle Scholar
  166. 166.
    Barrett BJ, Parfrey PS. Prevention of nephrotoxicity induced by radiocontrast agents. N Engl J Med. 1994;331: 1449–50.PubMedCrossRefGoogle Scholar
  167. 167.
    Bakris GL, Lass N, Gaber AO, Jones JD, Burnett JC Jr. Radiocontrast medium-induced declines in renal function: a role for oxygen free radicals. Am J Physiol. 1990;258: F115–20.Google Scholar
  168. 168.
    Birck R, Krzossok S, Markowetz F, Schnulle P, van der Woude FJ, Braun C. Acetylcysteine for prevention of contrast nephropathy: meta-analysis. Lancet. 2003;362: 598–603.PubMedCrossRefGoogle Scholar
  169. 169.
    Zager RA, Johnson AC, Hanson SY. Radiographic contrast media-induced tubular injury: evaluation of oxidant stress and plasma membrane integrity. Kidney Int. 2003;64: 128–39.PubMedCrossRefGoogle Scholar
  170. 170.
    Hizoh I, Strater J, Schick CS, Kubler W, Haller C. Radiocontrast-induced DNA fragmentation of renal tubular cells in vitro: role of hypertonicity. Nephrol Dial Transplant. 1998;13:911–18.PubMedCrossRefGoogle Scholar
  171. 171.
    Choudhury D, Ahmed Z. Drug-induced nephrotoxicity. Med Clin N Am. 1997;81:705–17.PubMedCrossRefGoogle Scholar
  172. 172.
    Bennett WM. Drug nephrotoxicity: an overview. Renal Failure. 1997;19:221–4.PubMedCrossRefGoogle Scholar
  173. 173.
    Perazella MA. Crystal-induced acute renal failure. Am J Med. 1999;106:459–65.PubMedCrossRefGoogle Scholar
  174. 174.
    Arroyo V, Gines P, Gerbes AL. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. Hepatology. 1996;23:164–76.PubMedCrossRefGoogle Scholar
  175. 175.
    Dagher L, Moore K. The hepatorenal syndrome. Gut. 2001; 49:729–37.PubMedCrossRefGoogle Scholar
  176. 176.
    Eckardt KM. Renal failure in liver disease. Intens Care Med. 1999;25:5–14.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • M. Bonello
  • R. Ratanarat
  • G. Salvatori
  • H. Oudemans Van-Straaten
  • R. Bellomo
  • C. Ronco

There are no affiliations available

Personalised recommendations