Skip to main content

Abstract

The first experiments with dialytic devices were performed at the beginning of the 20th century. Abel et al. described a method by which the blood of a living animal may be submitted to dialysis outside the body, and again returned to the natural circulation without exposure to air, infection by microorganisms or any alteration which would necessarily be prejudicial to life (2). Their dialyzer had a series of celloidin tubes with a surface area of 0.32 m2, but was insufficient for human application due to its small surface area. The first human dialysis, lasting 15 minutes, was performed in 1924 using celloidin tubes with a surface area of 1.5 m2. Since there was no heparin available at that time, clotting of the extracorporeal device was one of the limiting factors for this procedure. Heparin was introduced in the 1930s. At that time Kolff found that cellophane, used as sausage skin, is an excellent material for dialysis. The clearance of small solutes was encouraging, but the material was not very stable and leaked frequently.

Biocompatibility is the ability of a material device, procedure or system to perform without a clinically significant host response (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gurland H, Davison A, Bonomini V. Definitions and terminology in biocompatibility. Nephrol Dial Transplant. 1994;9:4–10.

    Google Scholar 

  2. Abel JJ, Rowntree LC, Turner BB. On the removal of diffusable substances from the circulating blood by means of dialysis. Trans Assoc Am Phys. 1913;28:51.

    Google Scholar 

  3. Kaplow LS, Goffinet JA. Profound neutropenia during the early phase ofhemodialysis. J Am Med Assoc. 1968;203:133–5.

    Article  Google Scholar 

  4. Shaldon S, Vienken J. Biocompatibility: is it a relevant consideration for today’s hemodialysis? Int J Artif Organs. 1996;19:201–4.

    PubMed  CAS  Google Scholar 

  5. Wolffindin C, Hoenich NA, Matthews JNS. Cellulose-based haemodialysis membranes: biocompatibility and functional performance compared. Nephrol Dial Transplant. 1992;7:340–5.

    Google Scholar 

  6. Radovich JM. Composition of polymer membranes for therapy of end stage renal disease. In: Bonomini V, Berland Y, editors. Dialysis Membranes: Structures and Predictions. Contribution to Nephrology. Basel: Karger, 1995:11–24.

    Google Scholar 

  7. Galli F, Rovidati S, Chiarantini L, Campus G, Canestrari F, Buoncristiani U. Bioreactivity and biocompatibility of a vitamin E-modified multi-layer hemodialysis filter. Kidney Int. 1998;54:580–9.

    Article  PubMed  CAS  Google Scholar 

  8. Girndt M, Lengler S, Kaul H, Sester U, Sester M, Köhler H. Prospective crossover trail on the influence of vitamin Ecoated dialyzer membranes on T-cell activation and cytokine induction. Am J Kidney Dis. 2000;35:95–104.

    Article  PubMed  CAS  Google Scholar 

  9. Pertosa G, Grandaliano G, Soccio M, Martino C, Gesualdo L, Schena FP. Vitamin E-modified filters modulate Jun N-terminal kinase activation in peripheral blood mononuclear cells. Kidney Int. 2002;62:602–10.

    Article  PubMed  CAS  Google Scholar 

  10. Hakim RM. Recent advances in the biocompatibility of haemodialysis membranes. Nephrol Dial Transplant. 1995;10:7–11.

    Article  PubMed  Google Scholar 

  11. Vanholder R. Relationship between biocompatibility and neutrophil function in hemodialysis patients. Adv Ren Replace Ther. 1996;3:312–14.

    PubMed  CAS  Google Scholar 

  12. Memoli B, Marzano L, Bisesti V, Andreucci M, Guida B. Hemodialysis-related lymphomononuclear release of interleukin-12 in patients with end-stage renal disease. J Am Soc Nephrol. 1999;10:2171–6.

    PubMed  CAS  Google Scholar 

  13. Hakim RM, Held PJ, Stannard DC et al. Effect of the dialysis membrane on mortality of chronic hemodialysis patients. Kidney Int. 1996;50:566–70.

    Article  PubMed  CAS  Google Scholar 

  14. Anderson S, Garcia DL, Brenner BM. Renal and systemic manifestation of glomerular disease. In: Brenner BM, Rector Jr FC, editors. The Kidney, 4th edn. Philadelphia: Saunders, 1991:1831–70.

    Google Scholar 

  15. Jorstad S, Smeby LC, Balstad T, Wideroe TE. Removal, generation and adsorption of β2-microglobulin during hemofiltration with five different membranes. Blood Purif. 1988;6:96–105.

    Article  PubMed  CAS  Google Scholar 

  16. Amadori A, Candi P, Sasdelli M et al. Hemodialysis leukopenia and complement function with different dialyzers. Kidney Int. 1983;24:775–81.

    Article  PubMed  CAS  Google Scholar 

  17. Cheung AK, Chenoweth DE, Otsuka D, Henderson LW. Compartmental distribution of complement activation products in artificial kidneys. Kidney Int. 1986;30:74–80.

    Article  PubMed  CAS  Google Scholar 

  18. Cheung AK, Parker CJ, Wilcox L et al. Activation of complement by hemodialysis membranes: polyacrylonitrile binds more C3a than cuprophan. Kidney Int. 1990;37: 1055–9.

    Article  PubMed  CAS  Google Scholar 

  19. Lonnemann G, Koch KM, Shaldon S. Studies on the ability of hemodialysis membranes to induce, bind, and clear human interleukin-1. J Lab Clin Med. 1988;112:76–86.

    PubMed  CAS  Google Scholar 

  20. Kandus A, Ponikvar R, Drinovec J, Kladnik P, Ivanovich P. Anaphylatoxin C3a and C5a adsorption on acrylonitrile membranes of hollow-fiber and plate dialyzers. Int J Artif Organs. 1990;13:176–80.

    PubMed  CAS  Google Scholar 

  21. Ward RA, Schaefer RM, Falkenhagen D. Biocompatibility of a new high-permeability modified cellulose membrane for haemodialysis. Nephrol Dial Transplant. 1993;8:47–53.

    Article  PubMed  CAS  Google Scholar 

  22. Parnes EL, Shapiro WB. Anaphylactoid reactions in hemodialysis patients treated with AN69 dialyzers. Kidney Int. 1991:40:1148–52.

    Article  PubMed  CAS  Google Scholar 

  23. Thielemans C, Madhoun P, Lenaers M, Schandene L, Goldman M, Vanderweghem JL. Anaphylactoid reactions during hemeodialysis on AN 69 membranes in patients receiving ACE inhibitors. Kidney Int. 1990;40:1148–52.

    Google Scholar 

  24. Schaefer RM, Fink E, Schaefer L, Barkhausen R, Kulzer P, Heidland A. Role of bradykinin in anaphylactoid reactions during hemodialysis with AN 69 dialyzers. Am J Nephrol. 1993;13:473–7.

    Article  PubMed  CAS  Google Scholar 

  25. Verresen L, Fink E, Lemke DH, Vanrenterghem Y. Bradykinin is a mediator of anaphylactoid reactions during hemodialysis with AN69 membranes. Kidney Int. 1994;45:1497–503.

    Article  PubMed  CAS  Google Scholar 

  26. Stannat S, Bahlmann J, Kiessling D, Koch KM, Deicher H, Peter HH. Complement activation during hemodialysis: comparison of polysulfone and cuprophan membranes. Contrib Nephrol. 1985;46:102–8.

    PubMed  CAS  Google Scholar 

  27. Streicher E, Schneider H. The development of a new polysulfone membrane: a new perspective in dialysis? Contrib Nephrol. 1985;46:1–13.

    PubMed  CAS  Google Scholar 

  28. Chenoweth DE. Anaphylatoxin formation in extracorporeal circuits. Complement. 1986;3:152–65.

    PubMed  CAS  Google Scholar 

  29. Hakim RM, Fearon DT, Lazarus JM. Biocompatibility of membranes: effects of chronic complement activation. Kidney Int. 1984;26:194–210.

    Article  PubMed  CAS  Google Scholar 

  30. Craddock PR, Fehr J, Delmasso AP, Brigham KL, Jacob HS. Hemodialysis leukopenia: pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membrane. J Clin Invest. 1977;59:878–88.

    Article  Google Scholar 

  31. Jacob HS. A beneficial antimicrobial mechanism that can cause disease. Arch Intern Med. 1978;138:461–3.

    Article  PubMed  CAS  Google Scholar 

  32. Chenoweth DE, Cheung AK, Ward DM, Henderson LW. Anaphylatoxin formation during hemodialysis: effects of different dialyzer membranes. Kidney Int. 1983;24:770–4.

    Article  PubMed  CAS  Google Scholar 

  33. Hugli TE. The structural basis for anaphylatoxin and chemotactic functions of C3a, C4a, and C5a. Crit Rev Immunol. 1981;2:321–66.

    Google Scholar 

  34. Masaki T, Gilson J, Leypoldt K, Cheung AK. Effect of permeability on indices of haemodialysis membrane biocompatibility. Nephrol Dial Transplant. 1999;14:1176–81.

    Article  PubMed  CAS  Google Scholar 

  35. Cheung AK. Quantitation of dialysis. Blood Purif. 1994; 12:42–53.

    Article  PubMed  CAS  Google Scholar 

  36. Cheung AK. Complement activation as index of haemodialysis membrane biocompatibility: The choice of methods and assays. Nephrol Dial Transplant. 1994;9:96–103.

    Article  PubMed  Google Scholar 

  37. Deppisch R, Schmidt V, Bommer J. Fluid phase generation of the terminal complement complex C5b-9 as a novel index of biocompatibility. Kidney Int. 1990;37:696–706.

    Article  PubMed  CAS  Google Scholar 

  38. Girndt M, Heisel O, Köhler H. Influence of dialysis with polyamide vs haemophan haemodialysers on monokines and complement activation during a 4-month long-term study. Nephrol Dial Transplant. 1999;14:676–82.

    Article  PubMed  CAS  Google Scholar 

  39. Ward RA, Buscaroli A, Schmidt B, Stefoni S, Gurland HJ, Klinkmann H. A comparison of dialysers with low-flux membranes: significant differences in spite of many similarities. Nephrol Dial Transplant. 1997;12:965–72.

    Article  PubMed  CAS  Google Scholar 

  40. Swinford RD, Baid S, Pascual M. Dialysis membrane adsorption during CRRT. Am J Kidney Dis. 1997;30: S32–7.

    Article  PubMed  CAS  Google Scholar 

  41. Pascual M, Schifferli JA. Adsorption of complement factor D by polyacrylonitrile dialysis membranes. Kidney Int. 1993;43:903–11.

    Article  PubMed  CAS  Google Scholar 

  42. Pascual M, Schifferli JA, Pannatier JG, Wauters JP. Removal of complement factor D by adsorption on polymethylmethacrylate dialysis membranes. Nephrol Dial Transplant. 1993;8:1305–11.

    PubMed  CAS  Google Scholar 

  43. Gasche Y, Pascual M, Suter PM, Favre H, Chevrolet JC, Schifferli JA. Complement depletion during haemofiltration with polyacrilonitrile membranes. Nephrol Dial Transplant. 1996:11:117–19.

    Article  PubMed  CAS  Google Scholar 

  44. Himmelfarb J, Lazarus M, Hakim RM. Reactive oxygen species production by monocytes and polymorphonuclear leukocytes during dialysis. Am J Kidney Dis. 1991;3:271–6.

    Google Scholar 

  45. Frank RD, Weber J, Dresbach H, Thelen H, Weiss C, Floege J. Role of contact system activation in hemodialyzerinduced thrombogenicity. Kidney Int. 2001;60:1972–81.

    Article  PubMed  CAS  Google Scholar 

  46. Hong J, Nilsson Ekdahl K, Reynolds H, Larsson R, Nilsson B. A new in vitro model to study interaction between whole blood and biomaterials. Studies of platelet and coagulation activation and the effect of aspirin. Biomaterials. 1999;20:603–11.

    Article  PubMed  CAS  Google Scholar 

  47. Cardigan RA, McGloin H, Mackie IJ, Machin SJ, Singer M. Activation of the tissue factor pathway occurs during continuous venovenous hemofiltration. Kidney Int. 1999;55:1568–74.

    Article  PubMed  CAS  Google Scholar 

  48. Wilhelmsson S, Asaba H, Gunnarsson B, Kudryk B, Robinson D, Bergstrom J. Measurement of fibrinopeptide A in the evaluation of heparin activity and fibrin formation during hemodialysis. Clin Nephrol. 1981;15:252–8.

    PubMed  CAS  Google Scholar 

  49. Cheung AK, Faezi-Jenkin B, Leypoldt JK. Effect of thrombosis on complement activation and neutrophil degranulation during in vitro hemodialysis. J Am Soc Nephrol. 1994;5:110–15.

    PubMed  CAS  Google Scholar 

  50. Speiser W, Wojta J, Korninger C, Kirchheimer JC, Zazgornik J, Binder BR. Enhanced fibrinolysis caused by tissue plasminogen activator release in hemodialysis. Kidney Int. 1987;32:280–3.

    Article  PubMed  CAS  Google Scholar 

  51. Stefoni S, Cianciolo G, Donati G et al. Standard heparin versus low-molecular-weight heparin. A medium-term comparison in hemodialysis. Nephron. 2002;92:589–600.

    Article  PubMed  CAS  Google Scholar 

  52. Henderson LW, Chenoweth DE. Cellulose membranes — time for a change? Contrib Nephrol. 1995;44:112–26.

    Google Scholar 

  53. Tonnesen MG, Smeldly LA, Henson PM. Neutrophilendothelial cell interactions. Modulation of neutrophil adhesiveness by complement fragments C5a and C5a-desarg and folmyl-methionyl-leucyl-phenylalanine in vitro. J Clin Invest. 1984;74:1582–92.

    Article  Google Scholar 

  54. Sirolli V, Ballone E, Di Stante S, Amoroso L, Bonomini M. Cell activation and cellular-cellular interactions during hemodialysis: effect of dialyzer membrane. Int J Artif Organs. 2002;25:529–37.

    PubMed  CAS  Google Scholar 

  55. Craddock PR, Hammerschmidt DE. Complement mediated granulocyte activation and down-regulation during hemodialysis. ASAIO J. 1984;7:50–6.

    Google Scholar 

  56. Himmelfarb J, Gerard NP, Hakim RM. Intradialytic modulation of granulocyte C5a receptors. J Am Soc Nephrol. 1991;2:920–6.

    PubMed  CAS  Google Scholar 

  57. Lundahl J, Hed J, Jacobson SH. Dialysis granulocytopenia is preceded by an increased surface expression of the adhesionpromoting glycoprotein Mac-1. Nephron. 1992;61:163–9.

    Article  PubMed  CAS  Google Scholar 

  58. Vanholder R, Ringoir S. Polymorphonuclear cell function and infection in dialysis. Kidney Int. 1992;42:S91–5.

    Article  Google Scholar 

  59. Himmelfarb J, Ault KA, Holbrook D, Leeber DA, Hakim RM. Intradialytic granulocyte reactive oxygen species production: a prospective crossover trial. J Am Soc Nephrol. 1993;4:178–86.

    PubMed  CAS  Google Scholar 

  60. Rosenkranz AR, Templ E, Traindl O, Heinzl H, Zlabinger GJ. Reactive oxygen product formation by human neutrophils as an early marker for biocompatibility of dialysis membrane. Clin Exp Immunol. 1994;98:300–5.

    Article  PubMed  CAS  Google Scholar 

  61. Bonomini M, Stuard S, Carreno MP et al. Neutrophil reactive oxygen species production during hemodialysis: role of activated platelet adhesion to neutrophils through P-selectin. Nephron. 1997;75:402–11.

    Article  PubMed  CAS  Google Scholar 

  62. Satoh M, Yamasaki Y, Nagake Y et al. Oxidative stress is reduced by the long-term use of vitamin E-coated dialysis filters. Kidney Int. 2001;59:1943–50.

    Article  PubMed  CAS  Google Scholar 

  63. Tsuruoka S, Kawaguchi A, Nishiki K et al. Vitamin Ebonded hemodialyzer improves neutrophil function and oxidative stress in patients with end-stage renal failure. Am J Kidney Dis. 2002;39:127–33.

    Article  PubMed  Google Scholar 

  64. Thylén P, Fernvik E, Lundahl J, Hed J, Jacobson SH. Cell surface receptor modulation on monocytes and granulocytes during clinical and experimental hemodialysis. Am J Nephrol. 1995;15:392–400.

    Article  PubMed  Google Scholar 

  65. Hörl WH, Steinhauer HB, Schollmeyer P. Plasma levels of granulocyte elastase during hemodialysis: effects of different dialyzer membranes. Kidney Int. 1985;28:791–6.

    Article  PubMed  Google Scholar 

  66. Hörl WH, Riegel W, Schollmeyer P, Rautenberg W, Neumann S. Different complement activation and granulocyte activation in patients dialyzed with PMMA dialyzers. Clin Nephrol. 1986;25:304–7.

    PubMed  Google Scholar 

  67. Bos JC, Grooteman MPC, van Houte AJ, Schoorl M, van Limbeek J, Nubé MJ. Low polymorphonuclear cell degranulation during citrate anticoagulation: a comparison between citrate and heparin dialysis. Nephrol Dial Transplant. 1997;12:1387–93.

    Article  PubMed  CAS  Google Scholar 

  68. Böhler J, Schollmeyer P, Dressel B, Dobos G, Hörl WH. Reduction of granulocyte activation during hemodialysis with regional citrate anticoagulation: dissociation of complement activation and neutropenia from neutrophil degranulation. J Am Soc Nephrol. 1996;7:234–41.

    PubMed  Google Scholar 

  69. Tanaka S, Robinson EA, Yoshimura T, Matsushima K, Leonard EJ, Appella E. Synthesis and biological characterization of monocyte-derived neutrophil chemotactic factor. FEBS Lett. 1988;236:467–70.

    Article  PubMed  CAS  Google Scholar 

  70. Niwa T, Miyazaki T, Sato M et al. Interleukin 8 and biocompatibility of dialysis membranes. Am J Nephrol. 1995;15:181–5.

    Article  PubMed  CAS  Google Scholar 

  71. Hörl WH. Hemodialysis membranes: interleukins, biocompatibility, and middle molecules. J Am Soc Nephrol. 2002;13:S62–71.

    PubMed  Google Scholar 

  72. Schmaldienst S, Hörl WH. Degranulation of polymorphonuclear leukocytes by dialysis membranes — the mystery clears up? Nephrol Dial Transplant. 2000;15:1909–10.

    Article  PubMed  CAS  Google Scholar 

  73. Cendoroglo M, Jaber BL, Balakrishnan VS, Perianayagam M, King AJ, Pereira BJ. Neutrophil apoptosis and dysfunction in uremia. J Am Soc Nephrol. 1999;10:93–100.

    PubMed  CAS  Google Scholar 

  74. Martin-Malo A, Carracedo J, Ramirez R et al. Effect of uremia and dialysis modality on mononuclear cell apoptosis. J Am Soc Nephrol. 2000;11:936–42.

    PubMed  CAS  Google Scholar 

  75. Roccatello D, Mazzucco G, Coppo R. Functional changes of monocytes due to dialysis membranes. Kidney Int. 1989;35:622–35.

    Article  PubMed  CAS  Google Scholar 

  76. Van Epps D, Chenoweth DE. Analysis of the binding of fluorescent C5a and C3a to human peripheral blood leukocyte. J Immunol. 1984;132:2862–7.

    PubMed  Google Scholar 

  77. Luger A, Kovarik J, Stummvoll HK, Urbanska A, Luger T. Blood-membrane interaction in hemodialysis leads to increased cytokine production. Kidney Int. 1987;32:84–8.

    Article  PubMed  CAS  Google Scholar 

  78. Schindler R, Linnenweber S, Schulze M et al. Gene expression of interleukin-1β3 during hemodialysis. Kidney Int. 1993;43:712–21.

    Article  PubMed  CAS  Google Scholar 

  79. Haeffner CN, Cavaillon JM, Laude M, Kazatchkine MD. C3a (C3adesArg) induces production and release of interleukin 1 by cultured human monocytes. J Immunol. 1987; 139:794–9.

    Google Scholar 

  80. Carracedo J, Ramirez R, Madueno JA et al. Cell apoptosis and hemodialysis-induced inflammation. Kidney Int. 2002;61(Suppl. 80):89–93.

    Article  Google Scholar 

  81. Lonnemann G. Chronic inflammation in hemodialysis: the role of contaminated dialysate. Blood Purif. 2000;18:214–23.

    Article  PubMed  CAS  Google Scholar 

  82. Biasucci LM, Liuzzo G, Fantuzzi G et al. Increasing levels of interleukin (IL)-1Ra and IL-6 during the first 2 days of hospitalization in unstable angina are associated with increased risk of in hospital coronary events. Circulation. 1999:99:2079–84.

    Article  PubMed  CAS  Google Scholar 

  83. Balakrishnan VS, Schmid CH, Jaber BL, Natov SN, King AJ, Pereira BJ. Interleukin-1 receptor antagonist synthesis by peripheral blood mononuclear cells: a novel predictor of morbidity among hemodialysis patients. J Am Soc Nephrol. 2000:11:2114–21.

    PubMed  CAS  Google Scholar 

  84. Kozek-Langenecker SA, Kettner SC, Oismueller C, Gonano C, Speiser W, Zimpfer M. Anticoagulation with prostaglandin El and unfractionated heparin during continuous venovenous hemofiltration. Crit Care Med. 1998;26: 1208–12.

    Article  PubMed  CAS  Google Scholar 

  85. Kozek-Langenecker SA, Spiss CK, Gamsjäger T, Domenig C, Zimpfer M. Anticoagulation with prostaglandins and unfractionated heparin during continuous venovenous haemofiltration: a randomized controlled trial. Wien Klin Wochenschr. 2002;114:96–101.

    PubMed  CAS  Google Scholar 

  86. Ireland H, Lane DA, Curtis JR. Objective assessment of heparin requirements for hemodialysis in humans. J Lab Clin Med. 1984;103:643–52.

    PubMed  CAS  Google Scholar 

  87. De Sanctis LB, Stefoni S, Cianciolo G et al. Effect of different dialysis membranes on platelet function. A tool for biocompatibility evaluation. Int J Artif Organs. 1996; 19:404–10.

    PubMed  Google Scholar 

  88. Gawaz MP, Mujais SK, Schmidt B, Blumenstein M, Gurland HJ. Platelet-leukocyte aggregates during hemodialysis: effect of membrane type. Artif Organs. 1999;23:29–36.

    Article  PubMed  CAS  Google Scholar 

  89. Kawabata K, Nagake Y, Shikata K et al. Soluble P-selectin is released from activated platelets in vivo during hemodialysis. Nephron. 1998;78:148–55.

    Article  PubMed  CAS  Google Scholar 

  90. Cases A, Reverter JC, Escolar G, Sanz C, Sorribes J, Ordinas A. In vivo evaluation of platelet activation by different cellulosic membranes. Artif Organs. 1997;21:330–4.

    Article  PubMed  CAS  Google Scholar 

  91. Kawabata K, Nakai S, Miwa M et al. Platelet GPIIb/IIIa is activated and platelet-leukocyte coaggregates formed in vivo during hemodialysis. Nephron. 2002;90:391–400.

    Article  PubMed  CAS  Google Scholar 

  92. Langford EJ, Brown AS, Wainwright RJ et al. Inhibition of platelet activity by S-nitrosoglutathione during coronary angioplasty. Lancet. 1994;344:1458–60.

    Article  PubMed  CAS  Google Scholar 

  93. Jilma B, Hergovich N, Stohlawetz P et al. Effects of sodium nitroprusside on hemodialysis-induced platelet activation. Kidney Int. 1999;55:686–91.

    Article  PubMed  CAS  Google Scholar 

  94. Winkler J, Fuchs J, Morduchowicz G, Boner G, Sulkiss J, Weinberger I. Circulating aggregated platelets, number of platelets per aggregate and platelet size in chronic dialysis patients. Nephron. 1997;77:44–7.

    Article  PubMed  CAS  Google Scholar 

  95. Henning BF, Zidek W, Linder B, Tepel M. Mean platelet volume and coronary heart disease in hemodialysis patients. Kidney Blood Press Res. 2002;25:103–8.

    Article  PubMed  Google Scholar 

  96. Himmelfarb J, Nelson S, McMonagle E et al. Elevated plasma glycocalicin levels and decreased ristocetin-induced platelet agglutination in hemodialysis patients. Am J Kidney Dis. 1998;32:132–8.

    Article  PubMed  CAS  Google Scholar 

  97. Salvati F, Liani M. Role of platelet surface receptor abnormalities in the bleeding and thrombotic diathesis of uremic patients on hemodialysis and peritoneal dialysis. Int J Artif Organs. 2001;24:131–5.

    PubMed  CAS  Google Scholar 

  98. Sloand JA, Sloand EM. Studies on platelet membrane glycoproteins and platelet function during hemodialysis. J Am Soc Nephrol. 1997;8:799–803.

    PubMed  CAS  Google Scholar 

  99. Diaz-Ricart M, Estebanell E, Cases A et al. Abnormal platelet cytoskeletal assembly in hemodialyzed patients results in deficient tyrosine phosphorylation signaling. Kidney Int. 2000;57:1905–14.

    Article  PubMed  CAS  Google Scholar 

  100. Ando M, Iwamoto Y, Suda A, Tsuchiya K, Nihei H. New insights into the thrombopoietic status of patients on dialysis through the evaluation of megakaryocytopoiesis in bone marrow and of endogenous thrombopoietin levels. Blood. 2001:97:915–21.

    Article  PubMed  CAS  Google Scholar 

  101. Kuwana M, Kaburaki J, Ikeda Y. Autoreactive T cells to platelet GPIIb-IIIa in immune thrombocytopenic purpura. Role in production of anti-platelet autoantibody. J Clin Invest. 1998;102:1393–402.

    Article  PubMed  CAS  Google Scholar 

  102. Gawaz MP, Mujais SK, Schmidt B, Gurland HJ. Plateletleukocyte aggregation during hemodialysis. Kidney Int. 1994;46:489–95.

    Article  PubMed  CAS  Google Scholar 

  103. Arnaout MA, Hakim RM, Todd RF 3rd, Dana N, Colten HR. Increased expression of an adhesion-promoting surface glycoprotein in the granulocytopenia of hemodialysis. N Engl J Med. 1985;312:457–62.

    Article  PubMed  CAS  Google Scholar 

  104. Himmelfarb J, Zaoui P, Hakim R. Modulation of granulocyte LAM-1 and MAC-1 during dialysis — a prospective, randomized controlled trial. Kidney Int. 1992;41:388–95.

    Article  PubMed  CAS  Google Scholar 

  105. Nagata K, Tsuji T, Todoroki N et al. Activated platelets induce superoxide anion release by monocytes and neutrophils through P-selectin (CD62). J Immunol. 1993;151: 3267–73.

    PubMed  CAS  Google Scholar 

  106. Moon DG, van der Zee H, Weston LK, Gudewicz PW, Fenton JW 2nd, Kaplan JE. Platelet modulation of neutrophil superoxide anion production. Thromb Haemost. 1990;63:91–6.

    PubMed  CAS  Google Scholar 

  107. Faint RW. Platelet-neutrophil interactions: their sig]nificance. Blood Rev. 1992;6:83–91.

    Article  PubMed  CAS  Google Scholar 

  108. Bonomini M, Sirolli V, Stuard S, Settefrati N. Interactions between platelets and leukocytes during hemodialysis. Artif Organs. 1999;23:23–8.

    Article  PubMed  CAS  Google Scholar 

  109. Martos MR, Hendry BM, Rodriguez-Puyol M, Dwight J, Diez-Marques ML, Rodriguez-Puyol D. Haemodialyser biocompatibility and erythrocyte structure and function. Clin Chim Acta. 1997;265:235–46.

    Article  PubMed  CAS  Google Scholar 

  110. Sevillano G, Rodriguez-Puyol M, Martos R et al. Cellulose acetate membrane improves some aspects of red blood cell function in hemodialysis patients. Nephrol Dial Transplant. 1990;5:497–9.

    Article  PubMed  CAS  Google Scholar 

  111. Gambhir KK, Parui R, Agarwal V, Cruz I. The effect of hemodialysis on the transport of sodium in erythrocytes from chronic renal failure patients maintained on hemodialysis. Life Sci. 2002;71:1615–21.

    Article  PubMed  CAS  Google Scholar 

  112. Sasaki M, Hosoya N, Saruhashi M. Vitamin E modified cellulose membrane. Artif Organ. 2000;24:779–89.

    Article  CAS  Google Scholar 

  113. Ozden M, Maral H, Akaydin D, Cetinalp P, Kalender B. Erythrocyte gluthatione peroxidase activity, plasma malondialdehyde and erythrocyte gluthatione levels in hemodialysis and CAPD patients. Clin Biochem. 2002;35:269–73.

    Article  PubMed  CAS  Google Scholar 

  114. Dhondt A, Vanholder R, Waterloos MA, Glorieux G, De Smet R, Lameire N. Citrate anticoagulation does not correct cuprophane bioincompatibility as evaluated by the expression of leucocyte surface molecules. Nephrol Dial Transplant. 1998;13:1752–8.

    Article  PubMed  CAS  Google Scholar 

  115. Janssen MJFM, Deegens JK, Kapinga TH et al. Citrate compared to low molecular weight heparin anticoagulation in chronic hemodialysis patients. Kidney Int. 1996;49: 806–13.

    Article  PubMed  CAS  Google Scholar 

  116. Leitienne P, Fouque D, Rigal D, Adeleine P, Trzeciak MC, Laville M. Heparins and blood polymorphonuclear stimulation in haemodialysis: an expansion of the biocompatibility concept. Nephrol Dial Transplant. 2000;15:1631–7.

    Article  PubMed  CAS  Google Scholar 

  117. Kozek-Langenecker SA, Spiss CK, Michalek-Sauberer A, Felfernig M, Zimpfer M. Effect of prostacyclin on platelets, polymorphonuclear cells, and heterotypic cell aggregation during hemofiltration. Crit Care Med. 2003;31:864–8.

    Article  PubMed  CAS  Google Scholar 

  118. Lonnemann G, Koch KM. Beta(2)-microglobulin amyloidosis: effects of ultrapure dialysate and type of dialyzer membrane. J Am Soc Nephrol. 2002;13(Suppl. 1):S72–7.

    PubMed  CAS  Google Scholar 

  119. Pickett TM, Cruickshank A, Greenwood RN, Taube D, Davenport A, Farrington K. Membrane flux not biocompatibility determines beta-2-microglobulin levels in hemodialysis patients. Blood Purif. 2002;20:161–6.

    Article  PubMed  CAS  Google Scholar 

  120. Hakim RM, Wingard RL, Husni L, Parker RA, Parker TF. The effect of membrane biocompatibility on plasma β2-microglobulin levels in chronic hemodialysis patients. J Am Soc Nephrol. 1996;7:472–8.

    PubMed  CAS  Google Scholar 

  121. Jahn B, Betz M, Deppisch R, Janssen O, Hänsch GM, Ritz E. Stimulation of b2m synthesis in lymphocytes after exposure to cuprophane dialyzer membranes. Kidney Int. 1991; 40:285–90.

    Article  PubMed  CAS  Google Scholar 

  122. Jahn B, Betz M, Deppisch R, Janssen O, Hänsch GM, Ritz E. Stimulation of beta2-microglobulin synthesis in lymphocytes after exposure to cuprophan dialyzer membranes. Kidney Int. 1991;40:285–90.

    Article  PubMed  CAS  Google Scholar 

  123. Schoels M, Jahn B, Hug F, Deppisch R, Ritz E, Hänsch GM. Stimulation of mononuclear cells by contact with cuprophan membranes: further increase of β2-microglobulin synthesis by activated late complement components. Am J Kidney Dis. 1993;21:394–9.

    PubMed  CAS  Google Scholar 

  124. Zaoui PM, Stone WJ, Hakim RM. Effects of dialysis membranes on beta2-microglobulin production and cellular expression. Kidney Int. 1990;38:962–8.

    Article  PubMed  CAS  Google Scholar 

  125. Senatore M, Nicoletti A, Rizzuto G. Is the bioreactivity of vitamin-E-modified dialyzer an expression of increased plasmatic vitamin E concentration. Nephron. 2002;92:487–9.

    Article  CAS  Google Scholar 

  126. Müller TF, Seitz M, Eckle I, Lange H, Kolb G. Biocompatibility differences with respect to the dialyzer sterilization method. Nephron. 1998;78:139–42.

    Article  PubMed  Google Scholar 

  127. Lonnemann G, Behme TC, Lenzner B et al. Permeability of dialyzer membranes to TNF alpha-inducing substances derived from water bacteria. Kidney Int. 1992;42:61–8.

    Article  PubMed  CAS  Google Scholar 

  128. Schwalbe S, Holzhauer M, Schaeffer J, Galanski M, Koch KM, Floege J. Beta 2-microglobulin associated amyloidosis: a vanishing complication of long-term hemodialysis? Kidney Int. 1997;52:1077–83.

    Article  PubMed  CAS  Google Scholar 

  129. Koda Y, Nishi SI, Miyazaki S et al. Switch from conventional to high-flux membrane reduces the risk of carpal tunnel syndrome and mortality of hemodialysis patients. Kidney Int. 1997;52:1096–101.

    Article  PubMed  CAS  Google Scholar 

  130. Kleophas W, Haastert B, Backus G, Hilgers P, Westhoff A, van Endert G. Long-term experience with an ultrapure individual dialysis fluid with a batch type machine. Nephrol Dial Transplant. 1998;13:3118–25.

    Article  PubMed  CAS  Google Scholar 

  131. Baz M, Durand C, Ragon A et al. Using ultrapure water in hemodialysis delays carpal tunnel syndrome. Int J Artif Organs. 1991;14:681–5.

    PubMed  CAS  Google Scholar 

  132. Miyata T, Kurokawa K, Van Ypersele de Strihou C. Relevance of oxidative and carbonyl stress to long-term uremic complications. Kidney Int. 2000;58:120–5.

    Article  Google Scholar 

  133. Van Ypersele de Strihou C. Are biocompatible membranes superior for hemodialysis therapy? Kidney Int. 1997; 52:5101–4.

    Google Scholar 

  134. Stein G, Franke S, Mahiout A et al. Influence of dialysis modalities on serum AGE levels in end-stage renal disease patients. Nephrol Dial Transplant. 2001;16:999–1008.

    Article  PubMed  CAS  Google Scholar 

  135. Vlassara H, Brownlee M, Manogue KR, Dinarello CA, Pasagian A. Cachectin/TNF and IL-1 induced by glucosemodified proteins: role in normal tissue remodelling. Science. 1988;240:1546–8.

    Article  PubMed  CAS  Google Scholar 

  136. Konishi Y, Okamura M, Konishi M et al. Enhanced gene expression of scavenger receptor in peripheral blood monocytes from patients on cuprophane haemodialysis. Nephrol Dial Transplant. 1997;12:1167–72.

    Article  PubMed  CAS  Google Scholar 

  137. Seres DS, Strain GW, Hashim SA, Goldberg IJ, Levin NW. Improvement of plasma lipoprotein profiles during high-flux dialysis. J Am Soc Nephrol. 1993;3:1409–15.

    PubMed  CAS  Google Scholar 

  138. Josephson MA, Fellner SK, Dasgupta A. Improved lipid profiles in patients undergoing high-flux hemodialysis. Am J Kidney Dis. 1992;20:361–6.

    PubMed  CAS  Google Scholar 

  139. Blankestijn PJ, Vos PF, Rabelink TJ, van Rijn HJ, Jansen H, Koomans HA. High-flux dialysis membranes improve lipid profile in chronic hemodialysis patients. J Am Soc Nephrol. 1995;5:1703–8.

    PubMed  CAS  Google Scholar 

  140. Goldberg IJ, Kaufman AM, Lavarias VA, Vanni-Reyes T, Levin NW. High flux dialysis membranes improve plasma lipoprotein profiles in patients with end-stage renal disease. Nephrol Dial Transplant. 1996;11:104–7.

    Article  PubMed  Google Scholar 

  141. Ingram AJ, Parbtani A, Churchill DN. Effects of two lowflux cellulose acetate dialysers on plasma lipids and lipoproteins — a cross-over trail. Nephrol Dial Transplant. 1998;13:1452–7.

    Article  PubMed  CAS  Google Scholar 

  142. Gonzalez AI, Schreier L, Elbert A et al. Lipoprotein alterations in hemodialysis: differences between diabetic and nondiabetic patients. Metabolism. 2003;52:116–21.

    Article  PubMed  CAS  Google Scholar 

  143. Mekki K, Bouchenak M, Lamri M, Remaoun M, Belleville J. Changes in plasma lecithin:cholesterol acyltransferase activity, HDL(2), HDL(3) amounts and compositions in patients with chronic renal failure after different times of hemodialysis. Atherosclerosis. 2002;162:409–17.

    Article  PubMed  CAS  Google Scholar 

  144. Parker TF, Wingard RL, Husni L, Alp Ikizler TA, Parker RA, Hakim RM. Effect of the membrane biocompatibility on nutritional parameters in chronic hemodialysis patients. Kidney Int. 1996;49:551–6.

    Article  PubMed  Google Scholar 

  145. Tayeb JS, Provencano R, El-Ghoroury M et al. Effect of biocompatibility of hemodialysis membranes on serum albumin levels. Am J Kidney Dis. 2000;35:606–10.

    Article  PubMed  CAS  Google Scholar 

  146. Leavey SF, Strawderman RL, Young EW et al. Crosssectional and longitudinal predictors of serum albumin in hemodialysis patients. Kidney Int. 200058:2119–28.

    Google Scholar 

  147. Memoli B, Minutolo R, Bisesti V et al. Changes of serum albumin and C-reactive protein are related to changes of interleukin-6 release by peripheral blood mononuclear cells in hemodialysis patients treated with different membranes. Am J Kidney Dis. 2002;39:266–73.

    Article  PubMed  CAS  Google Scholar 

  148. Lindsay RM, Spanner E. A hypothesis: the protein catabolic rate is dependent upon the type and amount of treatment in dialyzed uremic patients. Am J Kidney Dis. 1989;13:382–9.

    PubMed  CAS  Google Scholar 

  149. Lindsay RM, Spanner E, Heidenheim AP, Burton H, Lindsay S, Lefebvre JMJ. The influence of dialysis membrane upon protein catabolic rate. ASAIO J. 1991;37:134–5.

    Google Scholar 

  150. Locatelli F, Mastrangelo F, Redaelli B et al. Effects of different membranes and dialysis technologies on patient treatment tolerance and nutritional parameters. Kidney Int. 1996;50:1293–302.

    Article  PubMed  CAS  Google Scholar 

  151. Gutierrez A, Alvestrand A, Wahren J, Bergstrom J. Effect of in vivo contact between blood and dialysis membranes on protein catabolism in humans. Kidney Int. 1990;38:487–94.

    Article  PubMed  CAS  Google Scholar 

  152. Gutierrez A, Bergstrom J, Alvestrand A. Protein catabolism in sham haemodialysis: the effect of different membranes. Clin Nephrol. 1992;38:20–9.

    PubMed  CAS  Google Scholar 

  153. Dumler F, Stalla K, Mohini R, Zasuwa G, Levin NW. Clinical experience with short-time hemodialysis. Am J Kidney Dis. 1992;19:49–56.

    PubMed  CAS  Google Scholar 

  154. Hornberger JC, Chernew M, Petersen J, Garber AM. A multivariate analysis of mortality and hospital admission with high-flux dialysis. J Am Soc Nephrol. 1993;3:1227–37.

    Google Scholar 

  155. Hakim RM. Clinical implications of hemodialysis membrane biocompatibility. Kidney Int. 1993;44:484–94.

    Article  PubMed  CAS  Google Scholar 

  156. Vanholder R, De Smet R, Hsu C, Vogeleere P, Ringoir S. Uremic toxicity: the middle molecule hypothesis revisited. Semin Nephrol. 1994;14:205–18.

    PubMed  CAS  Google Scholar 

  157. Leypoldt JK, Cheung AK. Removal of high-molecularweight solutes during high-efficiency and high-flux haemodialysis. Nephrol Dial Transplant. 1996;11:329–35.

    Article  PubMed  CAS  Google Scholar 

  158. Haag-Weber M, Mai B, Cohen G, Hörl WH. GIP and DIP: a new view of uraemic toxicity. Nephrol Dial Transplant. 1994;9:346–7.

    Article  PubMed  CAS  Google Scholar 

  159. Charra B, Calemard E, Ruffet M et al. Survival as an index of adequacy of dialysis. Kidney Int. 1992;41:1286–91.

    Article  PubMed  CAS  Google Scholar 

  160. Woods HF, Nandakumar M. Improved outcome for haemodialysis patients treated with high-flux membranes. Nephrol Dial Transplant. 2000;15:36–42.

    Article  PubMed  Google Scholar 

  161. Hakim RM. Influence of the dialysis membrane on outcome of ESRD patients. Am J Kidney Dis. 1998;32:S71-S5.

    Article  PubMed  CAS  Google Scholar 

  162. Lang SM, Bergner A, Töpfer M, Schiffl H. Preservation of residual renal function in dialysis patients: effects of dialysistechnique-related factors. Pert Dial Int. 2001;21:52–7.

    CAS  Google Scholar 

  163. Hartmann J, Fricke H, Schiffl H. Biocompatible membranes preserve residual renal function in patients undergoing regular hemodialysis. Am J Kidney Dis. 1997;30:366–73.

    Article  PubMed  CAS  Google Scholar 

  164. Schulman G, Fogo A, Gung A, Badr K, Hakim R. Complement activation retards resolution of acute ischemic renal failure in the rat. Kidney Int. 1991;40:1069–74.

    Article  PubMed  CAS  Google Scholar 

  165. Himmelfarb J, Hakim RM. The use of biocompatible dialysis membranes in acute renal failure. Adv Ren Replace Ther. 1997;4:72–80.

    PubMed  CAS  Google Scholar 

  166. Modi GK, Pereira BJ, Jaber BL. Hemodialysis in acute renal failure: does the membrane matter? Semin Dial. 2001;14:318–21.

    Article  PubMed  CAS  Google Scholar 

  167. Hakim RM, Wingard RL, Parker RA. Effect of dialysis membranes in the treatment of patients with acute renal failure. N Engl J Med. 1994;331:1338–42.

    Article  PubMed  CAS  Google Scholar 

  168. Schiffl H, Lang SM, König A, Strasser T, Haider MC, Held E. Biocompatible membranes in acute renal failure: prospective case-controlled study. Lancet. 1994;344:570–2.

    Article  PubMed  CAS  Google Scholar 

  169. Schiffl H, Sitter T, Lang S, König A, Haider M, Held E. Bioincompatible membranes place patients with acute renal failure at increased risk ofinfection. ASAIO J. 1995;41:709–12.

    Article  Google Scholar 

  170. Neveu H, Kleinknecht D, Brivet F, Loirat P, Landais P. Prognostic factors in acute renal failure due to sepsis. Results of a prospective multicentre study. Nephrol Dial Transplant. 1996;11:293–9.

    Article  PubMed  CAS  Google Scholar 

  171. Himmelfarb J, Tolkoff Rubin N, Chandran P, Parker RA, Wingard RL, Hakim R. A multicenter comparison of dialysis membranes in the treatment of acute renal failure requiring dialysis. J Am Soc Nephrol. 1998;9:257–66.

    PubMed  CAS  Google Scholar 

  172. Cosentino F, Chaff C, Piedmonte M. Risk factors influencing survival in ICU acute renal failure. Nephrol Dial Transplant. 1994;9:179–82.

    PubMed  Google Scholar 

  173. Kurtal H, von Herrath D, Schaefer K. Is the choice of membrane important for patients with acute renal failure requiring hemodialysis? Artif Organs. 1995;19:391–4.

    Article  PubMed  CAS  Google Scholar 

  174. Jörres A, Gahl GM, Dobis C et al. Haemodialysis-membrane biocompatibility and mortality of patients with dialysis-dependent acute renal failure: a prospective randomised multicentre trial. Lancet. 1999;354:1337–41.

    Article  PubMed  Google Scholar 

  175. Vanholder R, Lameire N. Does biocompatibility of dialysis membranes affect recovery of renal function and survival? Lancet. 1999;354:1316–18.

    Article  PubMed  CAS  Google Scholar 

  176. Schiffl H. Biocompatibility and acute renal failure. Lancet. 2000;355:312.

    Article  PubMed  CAS  Google Scholar 

  177. Lauriat S, Linas SL. The role of neutrophils in acute renal failure. Semin Nephrol. 1998;18:498–504.

    PubMed  CAS  Google Scholar 

  178. Albright RC Jr, Smelser JM, McCarthy JT, Homburger HA, Bergstralh EJ, Larson TS. Patient survival and renal recovery in acute renal failure: randomized comparison of cellulose acetate and polysulfone membrane dialyzers. Mayo Clin Proc. 2000;75:1141–7.

    Article  PubMed  Google Scholar 

  179. Gastaldello K, Melot C, Kahn RJ, Vanherweghem JL, Vincent JL, Tielemans C. Comparison of cellulose diacetate and polysulfone membranes in the outcome of acute renal failure. A prospective randomized study. Nephrol Dial Transplant. 2000;15:224–30.

    Article  PubMed  CAS  Google Scholar 

  180. Jaber BL, Lau J, Schmid CH, Karsou SA, Levey AS, Pereira BJ. Effect of biocompatibility of hemodialysis membranes on mortality in acute renal failure: a meta-analysis. Clin Nephrol. 2002;57:274–82.

    PubMed  CAS  Google Scholar 

  181. Subramanian S, Venkataraman R, Kellum JA. Influence of dialysis membranes on outcomes in acute renal failure: a meta-analysis. Kidney Int. 2002;62:1819–23.

    Article  PubMed  CAS  Google Scholar 

  182. Jaber BL, Cendoroglo M, Balakrishnan VS et al. Impact of dialyzer membrane selection on cellular responses in acute renal failure: a crossover study. Kidney Int. 2000;57:2107–16.

    Article  PubMed  CAS  Google Scholar 

  183. de Sa HM, Freitas LA, Alves VC, Garcao MF, Rosa MA, Marques A. Leukocyte, platelet and endothelial activation in patients with acute renal failure treated by intermittent hemodialysis. Am J Nephrol. 2001;21:264–73.

    Article  PubMed  Google Scholar 

  184. Romao JE Jr, Abensur H, de Castro MC, Ianhez LE, Massola VC, Sabbaga E. Effect of dialyser biocompatibility on recovery from acute renal failure after cadaver renal transplantation. Nephrol Dial Transplant. 1999;14:709–12.

    Article  PubMed  Google Scholar 

  185. Lang SM, Schiffl H. Effect of dialyser biocompatibility on recovery from acute renal failure after cadaveric renal transplantation. Nephrol Dial Transplant. 2000;15:134–5.

    Article  PubMed  CAS  Google Scholar 

  186. Tonelli M, Manns B, Feller-Kopman D. Acute renal failure in the intensive care unit: a systematic review of the impact of dialytic modality on mortality and renal recovery. Am J Kidney Dis. 2002;40:875–85.

    Article  PubMed  Google Scholar 

  187. Karsou SA, Jaber BL, Pereira BJ. Impact of intermittent hemodialysis variables on clinical outcomes in acute renal failure. Am J Kidney Dis. 2000;35:980–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schmaldienst, S., Hörl, W.H. (2004). The biology of hemodialysis. In: Hörl, W.H., Koch, K.M., Lindsay, R.M., Ronco, C., Winchester, J.F. (eds) Replacement of Renal Function by Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2275-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2275-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7012-1

  • Online ISBN: 978-1-4020-2275-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics