Skip to main content

Optimization of high-flux, hollow-fiber artificial kidneys

  • Chapter
Replacement of Renal Function by Dialysis

Abstract

Over the past few decades, attempts to improve artificial kidneys have largely been a quest to optimize solute removal or clearance during therapy by altering membrane permeability. This emphasis on membrane permeability was propelled largely by the middle molecule hypothesis and a desire to obtain solute removal characteristics for artificial kidneys similar to those of the native organ. As of a decade ago these achievements were approximately realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Michaels AS. Operating parameters and performance criteria for hemodialyzers and other membrane-separation devices. Trans Am Soc Artif Intern Organs. 1966;12:387–92.

    PubMed  CAS  Google Scholar 

  2. Keller KH. Fluid Mechanics and Mass Transfer in Artificial Organs. Washington, DC: Georgetown University Press, 1973.

    Google Scholar 

  3. Colton CK, Lowrie EG. Hemodialysis: physical principles and technical considerations. In: Brenner BM, Rector Jr FC, editors. The Kidney, 2nd edn. Philadelphia: W.B Saunders, 1981:2425–89.

    Google Scholar 

  4. Hoenich NA, Woffindin C, Ronco C. Haemodialysers and associated devices. In: Jacobs C, Kjellstrand CM, Koch KM, Winchester JF, editors. Replacement of Renal Function by Dialysis, 4th edn. Dordrecht: Kluwer, 1996:188–230.

    Chapter  Google Scholar 

  5. Clark WR. Quantitative characterization of hemodialyzer solute and water transport. Semin Dial. 2001;14:32–6.

    Article  PubMed  CAS  Google Scholar 

  6. Allen R, Frost TH, Hoenich NA. The influence of the dialysate flow rate on hollow fiber hemodialyzer performance. Artif Organs. 1995;19:1176–80.

    Article  PubMed  CAS  Google Scholar 

  7. Leypoldt JK, Cheung AK, Agodoa LY, Daugirdas JT, Greene T, Keshaviah PR, for the Hemodialysis (HEMO) Study. Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. Kidney Int. 1997;51: 2013–17.

    Article  PubMed  CAS  Google Scholar 

  8. Leypoldt JK, Cheung AK. Effect of low dialysate flow rate on hemodialyzer mass transfer-area coefficients for urea and creatinine. Home Hemodial Int. 1999;3:51–4.

    Google Scholar 

  9. Hauk M, Kuhlmann MK, Riegel W, Köhler H. In vivo effects of dialysate flow rate on Kt/V in maintenance hemodialysis patients. Am J Kidney Dis. 2000;35:105–11.

    Article  PubMed  CAS  Google Scholar 

  10. Ouseph R, Ward RA. Increasing dialysate flow rate increases dialyzer urea mass transfer-area coefficients during clinical use. Am J Kidney Dis. 2001;37:316–20.

    Article  PubMed  CAS  Google Scholar 

  11. Ofsthun NJ, Leypoldt JK. Ultrafiltration and backfiltration during hemodialysis. Artif Organs. 1995;19:1143–61.

    Article  PubMed  CAS  Google Scholar 

  12. Ofsthun NJ, Colton CK, Lysaght MJ. Determinants of fluid and solute removal rates during hemofiltration. In: Henderson LW, Quellhorst EA, Baldamus CA, Lysaght MJ, editors. Hemofiltration. Berlin: Springer-Verlag, 1986: 17–39.

    Google Scholar 

  13. Henderson LW. Biophysics of ultrafiltration and hemofiltration. In: Jacobs C, Kjellstrand CM, Koch KM, Winchester JF, editors. Replacement of Renal Function by Dialysis, 4th edn. Dordrecht: Kluwer, 1996:114–45.

    Chapter  Google Scholar 

  14. Lysaght MJ, Schmidt B, Gurland HJ. Filtration rates and pressure driving force in AV filtration. An experimental study. Blood Purif. 1983;1:178–83.

    Article  Google Scholar 

  15. Ronco C, Brendolan A, Bragantini L et al. Solute and water transport during continuous arteriovenous hemofiltration (CAVH). Int J Artif Organs. 1987;10:179–84.

    PubMed  CAS  Google Scholar 

  16. Brenner BM, Troy JL, Daugharty TM. The dynamics of glomerular ultrafiltration in the rat. J Clin Invest. 1971;50: 1776–80.

    Article  PubMed  CAS  Google Scholar 

  17. Ronco C, Lupi A, Brendolan A, Feriani M, La Greca G. Ultrafiltration and pressure profiles in continuous arteriovenous hemofiltration studied by computerized scintigraphic imaging. Contrib Nephrol. 1991;93:179–83.

    PubMed  CAS  Google Scholar 

  18. Ronco C, Lupi A, Brendolan A, Feriani M, Crepaldi C, La Greca G. Ultrafiltration and pressure profiles in continuous arterio-venous hemofiltration studied by computerized scintigraphic imgaing. Int J Artif Organs. 1991;14:457–62.

    PubMed  CAS  Google Scholar 

  19. Ronco C, Bosch JP, Lew S et al. Technical and clinical evaluation of a new hemofilter for CAVH; theoretical concepts and practical application of a different blood flow geometry. In: La Greca G, Fabris A, Ronco C, editors. CAVH. Proceedings of the International Symposium on Continuous Arterio-Venous Hemofiltration. Milan: Wichtig Editore, 1986:55–61.

    Google Scholar 

  20. Ronco C, Brendolan A, Crepaldi C, Dell’ Aquila R, Milan M, La Greca G. Importance of hollow-fiber geometry in continuous arteriovenous hemofiltration. Contrib Nephrol. 1991;93:175–8.

    PubMed  CAS  Google Scholar 

  21. Ronco C, Parenzan L. Acute renal failure in infancy: treatment by continuous renal replacement therapy. Intens Care Med. 1995;21:490–9.

    Article  CAS  Google Scholar 

  22. Park JK, Chang HN. Flow distribution in the fiber lumen side of a hollow-fiber module. AIChE J. 1986;32:1937–47.

    Article  CAS  Google Scholar 

  23. Pangrle BJ, Walsh EG, Moore S, DiBiasio D. Investigation of fluid flow patterns in a hollow fiber module using magnetic resonance velocity imaging. Biotech Techniques. 1989;3: 67–72.

    Article  Google Scholar 

  24. Donoghue C, Brideau M, Newcomer P et al. Use of magnetic resonance imaging to analyze the performance of hollowfiber bioreactors. Ann N Y Acad Sci. 1992;665:285–300.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang J, Parker DL, Leypoldt JK. Flow distributions in hollow fiber hemodialyzers using magnetic resonance Fourier velocity imaging. ASAIO J. 1995;41:M678–82.

    Article  PubMed  CAS  Google Scholar 

  26. Agishi T, Ota K, Nose Y. Is hollow fibre occlusion due to maldistribution of blood? Proc Eur Dial Transplant Assoc. 1975;12:519–25.

    Google Scholar 

  27. Brendolan A, Ronco C, Ghezzi PM, Scabardi M, La Greca G. Hydraulic and flow dynamic characteristics of PMMA dialyzers. Contrib Nephrol. 1998;125:41–52.

    Article  Google Scholar 

  28. Brendolan A, Ronco C, Ghezzi PM, La Greca G. Hydraulic and flow dynamic characteristics of vitamin E-bonded dialyzers. Contrib Nephrol. 1999;127:79–88.

    Article  PubMed  CAS  Google Scholar 

  29. Ronco C, Ghezzi PM, Metry G et al. Effects of hematocrit and blood flow distribution on solute clearance in hollowfiber hemodialyzers. Nephron 2001;89:243–50.

    Article  PubMed  CAS  Google Scholar 

  30. Ronco C, Brendolan A, Crepaldi C, Rodighiero M, Scabardi M. Blood and dialysate flow distributions in hollowfiber hemodialyzers analyzed by computerized helical scanning technique. J Am Soc Nephrol. 2002;13:S53–61.

    PubMed  CAS  Google Scholar 

  31. Noda I, Gryte CC. Mass transfer in regular arrays of hollow fibers in countercurrent dialysis. AlChE J. 1979;25:113–22.

    Article  CAS  Google Scholar 

  32. Noda I, Brown-West DG, Gryte CC. Effect of flow maldistribution on hollow fiber dialysis — experimental studies. J Membr Sci. 1979;5:209–25.

    Article  CAS  Google Scholar 

  33. Takesawa S, Terasawa M, Sakagami M, Kobayashi T, Hidai H, Sakai K. Nondestructive evaluation by x-ray computed tomography of dialysate flow patterns in capillary dialyzers. ASAIO Trans. 1988;34:794–9.

    PubMed  CAS  Google Scholar 

  34. Costello MJ, Fane AG, Hogan PA, Schofield RW. The effect of shell side hydrodynamics on the performance of axial flow hollow fibre modules. J Membr Sci. 1993;80:1–11.

    Article  CAS  Google Scholar 

  35. Ronco C, Scabardi M, Goldoni M, Brendolan A, Crepaldi C, La Greca G. Impact of spacing filaments external to hollow fibers on dialysate flow distribution and dialyzer performance. Int J Artif Organs. 1997;20:261–6.

    PubMed  CAS  Google Scholar 

  36. Ronco C, Brendolan A, Crepaldi C et al. Dialysate flow distribution in hollow fiber hemodialyzers with different dialysate pathway configurations. Int J Artif Organs. 2000; 23:601–9.

    PubMed  CAS  Google Scholar 

  37. Delmez JA, Weerts CA, Hasamear PD, Windus DW. Severe dialyzer dysfunction undetectable by standard reprocessing validation tests. Kidney Int. 1989;36:478–84.

    Article  PubMed  CAS  Google Scholar 

  38. Vander Velde C, Leonard EF. Theoretical assessment of the effect of flow maldistributions on the mass transfer efficiency of artificial organs. Med Biol Eng Comput. 1985;23:224–9.

    Article  Google Scholar 

  39. Crowder RO, Cussler EL. Mass transfer in hollow-fiber modules with non-uniform hollow fibers. J Membr Sci. 1997;134:235–44.

    Article  CAS  Google Scholar 

  40. Clark WR, Shinaberger JH. Clinical evaluation of a new high efficiency hemodialyzer: Polysynthane. ASAIO J. 2000;46: 288–92.

    Article  PubMed  CAS  Google Scholar 

  41. Leypoldt JK, Cheung AK, Gilson JF, Kamerath CD. Mass transfer performance of polysulfone hemodialyzers. Pent Dial Int. 2001;21(Suppl. 1):S72.

    Google Scholar 

  42. Ronco C. Backfiltration: a controversial issue in modern dialysis. Int J Artif Organs. 1988;11:69–74.

    PubMed  CAS  Google Scholar 

  43. Ronco C. Backfiltration in clinical dialysis: nature of the phenomenon, mechanisms and possible solutions. Int J Artif Organs. 1990;13:11–21.

    PubMed  CAS  Google Scholar 

  44. Schmidt M, Baldamus CA, Schoeppe W. Backfiltration in hemodialyzers with highly permeable membranes. Blood Purif. 1984;2:108–14.

    Article  Google Scholar 

  45. Baurmeister U, Vienken J, Daum V. High-flux dialysis membranes: endotoxin transfer by backfiltration can be a problem. Nephrol Dial Transplant. 1989;4(Suppl.):89–93.

    Google Scholar 

  46. Hyver SW, Petersen J, Cajias J. An in vivo analysis of reverse ultrafiltration during high-flux and high-efficiency dialysis. Am J Kidney Dis. 1992;19:439–43.

    PubMed  CAS  Google Scholar 

  47. Stiller S, Mann H, Brunner H. Backfiltration in hemodialysis with highly permeable membranes. Contrib Nephrol. 1985; 46:23–32.

    PubMed  CAS  Google Scholar 

  48. Robertson BC, Curtin C. Effects of EPO therapy on backfiltration of dialysate in high flux dialysis. ASAIO Trans. 1990;36:M447–52.

    PubMed  CAS  Google Scholar 

  49. Pallone TL, Hyver SW, Petersen J. A model of the volumetric-controlled hemodialysis circuit. Kidney Int. 1992;41: 1366–71.

    Article  PubMed  CAS  Google Scholar 

  50. Soltys PJ, Ofsthun NJ, Leypoldt JK. Critical analysis of formulas for estimating backfiltration in hemodialysis. Blood Purif. 1992;10:326–32.

    Article  Google Scholar 

  51. Lonnemann G, Behme TC, Lenzner B et al. Permeability of dialyzer membranes to TNFα-inducing substances derived from water bacteria. Kidney Int. 1992;42:61–8.

    Article  PubMed  CAS  Google Scholar 

  52. Ronco C, Brendolan A, Feriani M et al. A new scintigraphic method to characterize ultrafiltration in hollow fiber dialyzers. Kidney Int. 1992;41:1383–93.

    Article  PubMed  CAS  Google Scholar 

  53. Leypoldt JK, Schmidt B, Gurland HJ. Measurement of backfiltration rates during hemodialysis with highly permeable membranes. Blood Purif. 1991;9:74–84.

    Article  PubMed  CAS  Google Scholar 

  54. Leypoldt JK, Schmidt B, Gurland HJ. Net ultrafiltration may not eliminate backfiltration during hemodialysis with highly permeable membranes. Artif Organs. 1991;15:164–70.

    Article  PubMed  CAS  Google Scholar 

  55. Lupi A, Ronco C, Bettini MC, La Greca G. Ultrafiltration and backfiltration profiles in hollow fiber dialyzers with different membranes. In: La Greca G, Ronco C, editors. Cellulose Triacetate. Evolution of a Dialysis Membrane. Milan: Wictig Editore, 1994:63–74.

    Google Scholar 

  56. Laude-Sharp M, Caroff A, Simard L, Pusineri C, Kazatchine MD, Haeffner-Cavillon N. Induction of IL-1 during hemodialysis: transmembrane passage of intact endotoxins (LPS). Kidney Int. 1990;38:1089–94.

    Article  PubMed  CAS  Google Scholar 

  57. Klein E, Pass T, Harding GB, Wright R, Million C. Microbial and endotoxin contamination in water and dialysate in the central United States. Artif Organs. 1990;14:85–94.

    Article  PubMed  CAS  Google Scholar 

  58. Powell AC, Bland LA, Oettinger CW et al. Lack of plasma interleukin-13 or tumor necrosis factor-α elevation using unfavorable hemodialysis conditions. J Am Soc Nephrol. 1991;2:1007–13.

    PubMed  CAS  Google Scholar 

  59. Gordon SM, Oettinger CW, Bland LA et al. Pyrogenic reactions in patients receiving conventional, high-efficiency, or high-flux hemodialysis treatments with bicarbonate dialysate containing high concentrations of bacteria and endotoxin. J Am Soc Nephrol. 1992;2:1436–44.

    PubMed  CAS  Google Scholar 

  60. Pergues DA, Oettinger CW, Bland LA et al. A prospective study of pyrogenic reactions in hemodialysis patients using bicarbonate dialysate fluids filtered to remove bacteria and endotoxin. J Am Soc Nephrol. 1992;3:1002–7.

    Google Scholar 

  61. Bambauer R, Walther J, Meyer S et al. Bacteria- and endotoxin-free dialysis fluid for use in chronic hemodialysis. Artif Organs. 1994;18:188–92.

    Article  PubMed  CAS  Google Scholar 

  62. Grooteman MPC, Nube MJ, Daha MR et al. Cytokine profiles during clinical high-flux dialysis: no evidence for cytokine generation of circulating monocytes. J Am Soc Nephrol. 1997;8:1745–54.

    PubMed  CAS  Google Scholar 

  63. Panichi V, De Pietro S, Andreini B et al. Cytokine production in haemodiafiltration: a multicentre study. Nephrol Dial Transplant. 1998;13:1737–44.

    Article  PubMed  CAS  Google Scholar 

  64. Panichi V, Tetta C, Rindi P, Palla R, Lonnemann G. Plasma C-reactive protein is linked to backfiltration associated interleukin-6 production. ASAIO J. 1998;44:M415–17.

    Article  PubMed  CAS  Google Scholar 

  65. Drüeke TB. β2-Microglobulin and amyloidosis. Nephrol Dial Transplant. 2000;15(Suppl. 1):17–24.

    Article  PubMed  Google Scholar 

  66. Stenvinkel P, Heimburger O, Paultre F et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 1999;55: 1899–911.

    Article  PubMed  CAS  Google Scholar 

  67. Ronco C, Orlandini G, Brendolan A, Lupi A, La Greca G. Enhancement of convective transport by internal filtration in a modified experimental hemodialyzer. Kidney Int. 1998; 54:979–85.

    Article  PubMed  CAS  Google Scholar 

  68. Ronco C, Brendolan A, Lupi A, Metry G, Levin NW. Effects of a reduced inner diameter of hollow fibers in hemodialyzers. Kidney Int. 2000;58:809–17.

    Article  PubMed  CAS  Google Scholar 

  69. Mujais SK, Schmidt B. Operating characteristics of hollow fiber dialyzers. In: Nissenson AR, Fine RN, Gentile DE, editors. Clinical Dialysis, 3rd edn. Norwalk: Appleton & Lange, 1995:77–92.

    Google Scholar 

  70. Soltys PJ, Zydney A, Leypoldt JK, Henderson LW, Oftsthun NJ. Potential of dual-skinned, high-flux membranes to reduce backtransport in hemodialysis. Kidney Int. 2000; 58:818–28.

    Article  PubMed  CAS  Google Scholar 

  71. Ronco C, Ballestri M, Brendolan A. New developments in hemodialyzers. Blood Purif. 2000;18:267–75.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leypoldt, J.K., Ronco, C. (2004). Optimization of high-flux, hollow-fiber artificial kidneys. In: Hörl, W.H., Koch, K.M., Lindsay, R.M., Ronco, C., Winchester, J.F. (eds) Replacement of Renal Function by Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2275-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2275-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7012-1

  • Online ISBN: 978-1-4020-2275-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics