Skip to main content

Management of anemia in patients with chronic kidney disease

  • Chapter
  • 579 Accesses

Abstract

Anemia is a frequent complication of patients with chronic kidney disease (CKD). Anemia is defined as a hemoglobin level <11.5 g/dl in women and <13.5 g/dl in adult men (in elderly men <12.5 g/dl). Many factors contribute to renal anemia, such as erythropoietin deficiency, iron deficiency and/or medication. The development of anemia is often complicated by the co-morbidity of the patients, such as diabetes, hypertension, severe heart failure, neoplasia or inflammation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Revised European Best Practice Guidelines for the Management of Anaemia in Patients with Chronic Renal Failure. Nephrol Dial Transplant. 2004;19(Suppl. 2):ii1–ii47.

    Google Scholar 

  2. Danielson B. R-HuEPO hyporesponsiveness: who and why? Nephrol Dial Transplant. 1995;10(Suppl. 2):69–73.

    Article  PubMed  Google Scholar 

  3. Hörl WH, Jacobs C, Macdougall IC et al. European Survey on Anaemia Management (ESAM). Nephrol Dial Transplant. 2000;15(Suppl. 4):43–5.

    Article  PubMed  Google Scholar 

  4. Allen DA, Breen C, Yaqoob MM, Macdougall IC. Inhibition of CFU-E colony formation in uremic patients with inflammatory disease: role of IFN-y and TNF-α. J Invest Med. 1999;47:204–11.

    CAS  Google Scholar 

  5. Stenvinkel P, Alvestrand A. Inflammation in end-stage renal disease: sources, consequences, and therapy. Semin Dial. 2002;15:329–37.

    Article  PubMed  Google Scholar 

  6. Eschbach JW, Adamson JW. Anemia of end-stage renal disease (ESRD). Kidney Int. 1985;28:1–5.

    Article  PubMed  CAS  Google Scholar 

  7. Thomas MC, MacIsaac RJ, Tsalamandris C, Power D, Jerums G. Unrecognized anemia in patients with diabetes: a cross-sectional survey. Diabetes Care. 2003;26:1164–9.

    Article  PubMed  Google Scholar 

  8. Kazmi WH, Kausz AT, Khan S et al. Anemia: an early complication of chronic renal insufficiency. Am J Kidney Dis. 2001;38:803–12.

    Article  PubMed  CAS  Google Scholar 

  9. Hsu CY, McCulloch CE, Curban GC. Epidemiology of anemia associated with chronic renal insufficiency among adults in the United States: results from the Third National Health and Nutrition Examination survey. J Am Soc Nephrol. 2002;13:504–10.

    Article  PubMed  CAS  Google Scholar 

  10. Kausz AT, Khan SS, Abichandani R et al. Management of patients with chronic renal insuffiency in the Northeastern United States. J Am Soc Nephrol. 2001;12:1501–7.

    PubMed  CAS  Google Scholar 

  11. Valderrábano F, Hörl WH, Macdougall IC, Rossert J, Rutkowski B, Wauters JP. Pre-dialysis survey on anaemia management. Nephrol Dial Transplant. 2003;18:89–100.

    Article  PubMed  Google Scholar 

  12. Hörl WH, Macdougall IC, Rossert J, Rutkowski B, Wauters JP, Valderrábano F. Predialysis survey on anemia management: patient referral. Am J Kidney Dis. 2003;41: 49–61.

    Article  PubMed  Google Scholar 

  13. McClellan WM, Jurkovitz C, Abramson J. The epidemiology and control of anemia among pre-ESRD patients with chronic kidney disease. Eur J Clin Invest. 2004 (In press).

    Google Scholar 

  14. McClellan WM, Flanders WD, Langston RD, Jurkovitz C, Presley R. Anemia and renal insufficiency are independent risk factors for death among patients with congestive heart failure admitted to community hospitals: a population-based study. J Am Soc Nephrol. 2002;13:1928–36.

    Article  PubMed  Google Scholar 

  15. Horwich TB, Fonarow GC, Hamilton MA, McClellan WR, Borenstein J. Anemia is associated with worse symptoms, greater impairment in functional capacity and a significant increase in mortality in patients with advanced heart failure. J Am Coll Cardiol. 2002;39:1780–6.

    Article  PubMed  Google Scholar 

  16. Ezekowitz JA, McAlister FA, Armstrong PW. Anemia is common in heart failure and is associated with poor outcomes: insights from a cohort of 12 065 patients with newonset heart failure. Circulation. 2003;107:223–5.

    Article  PubMed  Google Scholar 

  17. Langston RD, Presley R, Flanders WD, McClellan WM. Renal insufficiency and anemia are independent risk factors for death among patients with acute myocardial infarction admitted to community hospitals: a population-based study. Kidney Int. 2003;64:1398–405.

    Article  PubMed  Google Scholar 

  18. Abramson JL, Jurkovitz CT, Vaccarino V, Weintraub WS, McClellan W. Chronic kidney disease, anemia, and incident stroke in a middle-aged, community-based population: the ARIC Study. Kidney Int. 2003;64:610–15.

    Article  PubMed  Google Scholar 

  19. Levin A, Thompson CR, Ethier L et al. Left ventricular mass index increase in early renal disease: impact of decline in hemoglobin. Am J Kidney Dis. 1999;34:125–34.

    Article  PubMed  CAS  Google Scholar 

  20. London GM, Pannier B, Guerin AP et al. Alterations of left ventricular hypertrophy in and survival of patients receiving hemodialysis: follow-up of an interventional study. J Am Soc Nephrol. 2001;12:2759–67.

    PubMed  CAS  Google Scholar 

  21. London GM, Pannier B, Guerin AP, Marchais SJ, Safar ME, Cuche JL. Cardiac hypertrophy, aortic compliance, peripheral resistance, and wave reflection in end-stage renal disease: comparative effects of ACE inhibition and calcium channel blockade. Circulation. 1994;90:2786–96.

    Article  PubMed  CAS  Google Scholar 

  22. Ifudu O, Feldman J, Friedman EA. The intensity of hemodialysis and the response to erythropoietin in patients with end-stage renal disease. N Engl J Med. 1996;334: 420–5.

    Article  PubMed  CAS  Google Scholar 

  23. Silberberg J, Racine N, Barre P, Sniderman AD. Regression of left ventricular hypertrophy in dialysis patients following correction of anemia with recombinant human erythropoietin. Can J Cardiol. 1990;6:1–4.

    PubMed  CAS  Google Scholar 

  24. Cannella G, La Canna G, Sandrini M et al. Reversal of left ventricular hypertrophy following recombinant human erythropoietin treatment of anaemic dialysed uremic patients. Nephrol Dial Transplant. 1991;6:31–7.

    Article  PubMed  CAS  Google Scholar 

  25. Möcks J, Franke W, Ehmer B et al. Analysis of safety database for long term epoetin beta treatment. A meta analysis covering 3697 patients. In: Koch KM, Stein G, editors. Pathogenetic and Therapeutic Aspects of Chronic Renal Failure. New York: Marcel Dekker, 1997:163–79.

    Google Scholar 

  26. Locatelli F, Conte F, Marcelli D. The impact of haematocrit levels and erythropoietin treatment on overall and cardiovascular mortality and morbidity — the experience of the Lombardy dialysis registry. Nephrol Dial Transplant. 1998;13:1642–4.

    Article  PubMed  CAS  Google Scholar 

  27. Ma JZ, Ebben J, Xia H, Collins AJ. Hematocrit level and associated mortality in hemodialysis patients. J Am Soc Nephrol. 1999;10:610–19.

    PubMed  CAS  Google Scholar 

  28. Collins AJ. Influence of target hemoglobin in dialysis patients on morbidity and mortality. Kidney Int. 2002; 80(Suppl.):44–8.

    Article  Google Scholar 

  29. Locatelli F, Pisoni RL, Combe C et al. Anaemia in haemodialysis patients of five European countries: association with morbidity and mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol Dial Transplant. 2004;19:121–32

    Article  PubMed  Google Scholar 

  30. Canadian Erythropoietin Study Group. Association between recombinant human erythropoietin and quality of life and exercise capacity of patients receiving haemodialysis. Br J Pharmacol. 1990:300:573–8.

    Google Scholar 

  31. Keown PA. Quality of life in end-stage renal disease patients during recombinant erythropoietin therapy. The Canadian erythropoietin study. Contrib Nephrol. 1991; 88:81–6

    PubMed  CAS  Google Scholar 

  32. Clyne N, Jogestrand T. Effect of erythropoietin treatment on physical exercise capacity and on renal function in predialytic uremic patients. Nephron. 1992;60:390–6

    Article  PubMed  CAS  Google Scholar 

  33. Valderrábano F. Quality of life benefits of early anaemia treatment. Nephrol Dial Transplant. 2000;15:23–8

    Article  PubMed  Google Scholar 

  34. Foley RN, Parfrey PS, Morgan J et al. Effect of hemoglobin levels in hemodialysis patients with asymptomatic cardiomyopathy. Kidney Int. 2000;58:1325–35

    Article  PubMed  CAS  Google Scholar 

  35. McMahon LP, Mason K, Skinner SL et al. Effects of haemoglobin normalization on quality of life and cardiovascular parameters in end-stage renal failure. Nephrol Dial Transplant. 2000;15:1425–30

    Article  PubMed  CAS  Google Scholar 

  36. Cannella G, La Canna G, Sandrini M et al. Renormalization of high cardiac output and of left ventricular size following long-term recombinant human erythropoietin treatment of anemic dialyzed uremic patients. Clin Nephrol. 1990; 34:272–8

    PubMed  CAS  Google Scholar 

  37. Macdougall IC, Lewis NP, Saunders MJ et al. Long-term cardiorespiratory effects of amelioration of renal anaemia by erythropoietin. Lancet. 1990;335:489–93

    Article  PubMed  CAS  Google Scholar 

  38. Löw-Friedrich I, Grützmacher P, Marz W et al. Long-term echocardiographic examinations in chronic hemodialysis patients substituted with recombinant human erythropoietin. Blood Purif. 1990;8:272–8

    Article  PubMed  Google Scholar 

  39. Silberberg J, Racine N, Barre P et al. Regression of left ventricular hypertrophy in dialysis patients following correction of anemia with recombinant human erythropoietin. Can J Cardiol. 1990;6:1–4

    PubMed  CAS  Google Scholar 

  40. Pascual J, Teruel JL, Moya JL et al. Regression of left ventricular hypertrophy after partial correction of anemia with erythropoietin in patients on hemodialysis: a prospective study. Clin Nephrol. 1991;35:280–7

    PubMed  CAS  Google Scholar 

  41. Fellner SK, Lang RM, Neumann A et al. Cardiovascular consequences of correction of the anemia of renal failure with erythropoietin. Kidney Int. 1993;44:1309–15

    Article  PubMed  CAS  Google Scholar 

  42. Wizemann V, Schäfer R, Kramer W. Follow-up of cardiac changes induced by anemia compensation in normotensive hemodialysis patients with left-ventricular hypertrophy. Nephron. 1993;64:202–6

    Article  PubMed  CAS  Google Scholar 

  43. Foley RN, Parfrey PS, Harnett JD et al. The impact of anemia on cardiomyopathy, morbidity, and mortality in endstage renal disease. Am J Kidney Dis. 1996;28:53–61

    Article  PubMed  CAS  Google Scholar 

  44. Lim PS, Yeh CH, Hung TS. Effects of recombinant erythropoietin on echocardiographic findings in elderly dialysis patients. Nephrology. 1997;3:149–54

    Article  CAS  Google Scholar 

  45. Hayashi T, Suzuki A, Shoji T et al. Cardiovascular effects of normalizing the hematocrit level during erythropoietin therapy in predialysis patients with chronic renal failure. Am J Kidney Dis. 2000;35:250–6

    Article  PubMed  CAS  Google Scholar 

  46. Portoles J, Torralbo M, Martin P et al. Regression of left ventricular hypertrophy after partial correction of anemia with erythropoietin in patients on hemodialysis: a prospective study. Clin Nephrol. 1991;35:280–7

    Google Scholar 

  47. London GM, Pannier B, Guerin AP et al. Alterations of left ventricular hypertrophy in, and survival of patients receiving hemodialysis: follow-up of an interventional study. J Am Soc Nephrol. 2001;12:2759–67

    PubMed  CAS  Google Scholar 

  48. McMahon LP. Advances in anaemia management: current evidence. Nephrology. 2002;7:257–61

    Article  Google Scholar 

  49. Furuland H, Linde T, Ahlmén J et al. A randomized controlled trial of haemoglobin normalization with epoetin alfa in pre-dialysis and dialysis patients. Nephrol Dial Transplant. 2003;28:353–61

    Article  Google Scholar 

  50. Besarab A, Bolton WK, Browne JK et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N Engl J Med. 1998;339:584–90

    Article  PubMed  CAS  Google Scholar 

  51. Levin A, Stevens L, McCullough PA. Cardiovascular disease and the kidney. Tracking a killer in chronic kidney disease. Postgrad Med. 2002;111:53–60

    Article  PubMed  Google Scholar 

  52. Al-Ahmad A, Levey A, Rand W et al. Reduced kidney function and anemia as risk factors for mortality in patients with left ventricular dysfunction. J Am Coll Cardiol. 2001;38:955–62

    Article  PubMed  CAS  Google Scholar 

  53. Silverberg DS, Wexler D, Blum M et al. The use of subcutaneous erythropoietin and intravenous iron for the treatment of the anemia of severe, resistant congestive heart failure improves cardiac and renal function, functional cardiac class, and markedly reduces hospitalizations. J Am Coll Cardiol. 2000;35:1737–44

    Article  PubMed  CAS  Google Scholar 

  54. Silverberg DS, Wexler D, Iaina A. The importance of anemia and its correction in the management of severe congestive heart failure. Eur Heart Fail. 2002;4:681–6

    Article  Google Scholar 

  55. Mayer G, Thum J, Cada EM et al. Working capacity is increased following recombinant human erythropoietin treatment. Kidney Int. 1988;34:525–8

    Article  PubMed  CAS  Google Scholar 

  56. Painter P, Moore G, Carlson L et al. Effects of exercise training plus normalization of hematocrit on exercise capacity and health-related quality of life. Am J Kidney Dis. 2002;39:257–65

    Article  PubMed  Google Scholar 

  57. Fink J, Blahut S, Reddy M, Light P. Use of erythropoietin before the initiation of dialysis and its impact on mortality. Am J Kidney Dis. 2001;37:348–55

    Article  PubMed  CAS  Google Scholar 

  58. Collins AJ, Ma JZ, Xia A, Ebben J. Trends in anemia treatment with erythropoietin usage and patient outcomes. Am J Kidney Dis. 1998;32(Suppl. 4):5133–41

    Google Scholar 

  59. Collins AJ. Influence of target hemoglobin in dialysis patients on morbidity and mortality. Kidney Int. 2002; 80(Suppl.):44–8

    Article  Google Scholar 

  60. Ofsthun N, Labrecque J, Lacson E, Keen M, Lazarus JM. The effects of higher hemoglobin levels on mortality and hospitalization in hemodialysis patients. Kidney Int. 2003;63:1908–14

    Article  PubMed  Google Scholar 

  61. Xue JL, St Peter WL, Ebben JP, Everson SE, Collins AJ. Anemia treatment in the pre-ESRD period and associated mortality in elderly patients. Am J Kidney Dis. 2002; 40:1153–61

    Article  PubMed  Google Scholar 

  62. Xia H, Ebben J, Ma JZ, Collins AJ. Hematocrit levels and hospitalization risks in hemodialysis. J Am Soc Nephrol. 1999;10:1309–16

    PubMed  CAS  Google Scholar 

  63. Moreno F, Sanz-Guajardo D, López-Gómez JM, Jofre R, Valderrábano F. Increasing the hematocrit has a beneficial effect on quality of life and is safe in selected hemodialysis patients. Spanish Cooperative Renal Patients Quality of Life Study Group of the Spanish Society of Nephrology. J Am Soc Nephrol. 2000;11:335–42

    PubMed  CAS  Google Scholar 

  64. Holland DC, Lam M. Predictors of hospitalization and death among pre-dialysis patients: a retrospective cohort study. Nephrol Dial Transplant. 2000;15:650–8

    Article  PubMed  CAS  Google Scholar 

  65. Revicki DA, Brown RE, Feeny DH et al. Health-related quality of life associated with recombinant human erythropoietin therapy for predialysis chronic renal disease patients. Am J Kidney Dis. 1995;25:548–54

    Article  PubMed  CAS  Google Scholar 

  66. Suzuki M, Tsutsui M, Yokogama A, Hirasawa Y. Normalization of hematocrit with recombinant human erythropoietin in chronic hemodialysis patients does not fully improve their exercise tolerance abilities. Artif Organs. 1995;19:1258–61

    Article  PubMed  CAS  Google Scholar 

  67. Pickett JL, Theberge DC, Brown WS et al. Normalizing hematocrit in dialysis function improves brain function. Am J Kidney Dis. 1999;33:1122–30

    Article  PubMed  CAS  Google Scholar 

  68. Valderrábano F, Jofre R, López-Gòmez JM. Quality of life in end-stage renal disease patients. Am J Kidney Dis. 2001;38:443–64.

    Article  PubMed  Google Scholar 

  69. Broom J. Anaemia in diabetic renal disease: an underestimated risk factor. Acta Diabetol. 2002;39(Suppl. 1):S2

    Article  Google Scholar 

  70. Inomata S, Itoh M, Imai H, Sato T. Serum levels of erythropoietin as a novel marker reflecting the severity of diabetic nephropathy. Nephron. 1997;75:426–30

    Article  PubMed  CAS  Google Scholar 

  71. Ishimura E, Nishizawa Y, Okuno S et al. Diabetes mellitus increases the severity of anemia in non-dialyzed patients with renal failure. J Nephrol. 1998;11:83–6

    PubMed  CAS  Google Scholar 

  72. Winkler AS, Marsden J, Chaudhuri KR, Hambley H, Watkins PJ. Erythropoietin depletion and anemia in diabetes mellitus. Diabet Med. 1999;16:813–19

    Article  PubMed  CAS  Google Scholar 

  73. Dikow R, Schwenger V, Schömig M, Ritz E. How should we manage anaemia in patients with diabetes? Nephrol Dial Transplant. 2002;17(Suppl. 1):67–72

    Article  PubMed  Google Scholar 

  74. Yun YS, Lee HC, Yoo NC et al. Reduced erythropoietin responsiveness to anemia in diabetic patients before advanced diabetic nephropathy. Diabet Res Clin Pract. 1999; 46:223–9

    Article  CAS  Google Scholar 

  75. Cotroneo P, Ricerca M, Todaro L et al. Blunted erythropoietin response to anemia in patients with type 1 diabetes. Diabet Metab Res Rev. 2000;16:172–7

    Article  CAS  Google Scholar 

  76. Kojima K, Totsuka Y. Anemia due to reduced serum erythropoietin concentration in nonuremic diabetic patients. Diabet Res Clin Pract. 1995;27:229–33

    Article  CAS  Google Scholar 

  77. Vaziri ND, Kaupke CJ, Barton CH, Gonzaes E. Plasma concentration and the urinary excretion of erythropoietin in adult nephrotic syndrome. Am J Med. 1992; 92:35–40

    Article  PubMed  CAS  Google Scholar 

  78. Ishimitsu T, Ono H, Sugiyama M et al. Successful erythropoietin treatment for severe anemia in nephrotic syndrome without renal dysfunction. Nephron. 1996;74: 607–10

    Article  PubMed  CAS  Google Scholar 

  79. Bayés B, Serra A, Juncá J, Lauzurica R. Successful treatment of anemia of nephrotic syndrome with recombinant erythropoietin. Nephrol Dial Transplant. 1998;13:1894–5 (letter)

    Article  PubMed  Google Scholar 

  80. Bosman DR, Osborne CA, Mardsen JT, Macdougall IC, Gardner WN, Watkins PJ. Erythropoietin response to hypoxia in patients with diabetic autonomic neuropathy and non-diabetic chronic renal failure. Diabet Med. 2002;19:65–9

    Article  PubMed  CAS  Google Scholar 

  81. Qiao Q, Keinanen-Kiukaanniemi S, Laara E. The relationship between hemoglobin levels and diabetic retinopathy. J Clin Epidemiol. 1997;50:153–8

    Article  PubMed  CAS  Google Scholar 

  82. Aiello LP, Cahill MT, Wong JS. Systemic considerations in the management of diabetic retinopathy. Am J Ophthalmol. 2001;132:760–76

    Article  PubMed  CAS  Google Scholar 

  83. Friedman EA, Brown CD, Berman DH. Erythropoietin in diabetic macular edema and renal insufficiency. Am J Kidney Dis. 1995;26:202–8

    Article  PubMed  CAS  Google Scholar 

  84. Berman DH, Friedman EA. Partial absorption of hard exudates in patients with diabetic end-stage renal disease and severe anemia after treatment with erythropoietin. Retina. 1994;14:1–5

    PubMed  CAS  Google Scholar 

  85. Priyadarshi A, Periyasamy S, Burke TJ et al. Effects of reduction of renal mass on renal oxygen tension and erythropoietin production in the rat. Kidney Int. 2002;61:542–6

    Article  PubMed  CAS  Google Scholar 

  86. Donnelly S. Why is erythropoietin made in the kidney? The kidney functions as a critmeter. Am J Kidney Dis. 2001;38:415–25

    Article  PubMed  CAS  Google Scholar 

  87. Norman JT, Clark IM, Garcia PL. Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int. 2000;58:2351–66

    Article  PubMed  CAS  Google Scholar 

  88. Eickelberg O, Seebach F, Riordan M et al. Functional activation of heat shock factor and hypoxia-inducible factor in the kidney. J Am Soc Nephrol. 2002;13:2094–101

    Article  PubMed  CAS  Google Scholar 

  89. Fine LG, Bandyopadhay D, Norman JT. Is there a common mechanism for the progression of different types of renal diseases other than proteinuria? Towards the unifying theme of chronic hypoxia. Kidney Int. 2000;57(Suppl. 75): S22–6.

    Article  Google Scholar 

  90. Rosenberger C, Mandriota S, Jürgensen JS et al. Expression of hypoxia-inducible factor-1α and -2α in hypoxic and ischemic rat kidneys. J Am Soc Nephrol. 2002;13: 1721–32

    Article  PubMed  CAS  Google Scholar 

  91. Garcia DL, Anderson S, Rennke HG, Brenner BM. Anemia lessens and its prevention with recombinant human erythropoietin worsens glomerular injury and hypertension in rats with reduced renal mass. Proc Natl Acad Sci USA. 1988;85:6142–6

    Article  PubMed  CAS  Google Scholar 

  92. Bidani AK, Mitchell KD, Schwartz MM et al. Absence of glomerular injury or nephron loss in a normotensive rat remnant kidney model. Kidney Int. 1990;38:28–38

    Article  PubMed  CAS  Google Scholar 

  93. Eschbach JW, Kelly MR, Haley NR, Ables RI, Adamson JW. Treatment of the anemia of progressive renal failure with recombinant human erythropoietin. N Engl J Med. 1989;321:158–63

    Article  PubMed  CAS  Google Scholar 

  94. Roth D, Smith RD, Schulman G et al. Effects of recombinant human erythropoietin on renal function in chronic renal failure predialysis patients. Am J Kidney Dis. 1994; 24:777–84

    PubMed  CAS  Google Scholar 

  95. Kuriyama S, Tomonari H, Yoshida H et al. Reversal of anemia by erythropoietin therapy retards the progression of chronic renal failure, especially in nondiabetic patients. Nephron. 1997;77:176–85

    Article  PubMed  CAS  Google Scholar 

  96. Cody J, Daly C, Campbell M et al. Recombinant human erythropoietin for chronic renal failure anaemia in predialysis patients (Cochrane Review). In: The Cochrane Library, Issue 3,2002. Oxford: Update software

    Google Scholar 

  97. Fishbane S. Review: Recombinant erythropoietin decreases the need for blood transfusions and may delay dialysis in chronic renal failure. ACP J Club. 2002;136:85

    PubMed  Google Scholar 

  98. Jungers P, Choukroun G, Oualim Z et al. Beneficial influence of recombinant human erythropoietin therapy on the rate of progression of chronic renal failure in predialysis patients. Nephrol Dial Transplant. 2001;16:307–12

    Article  PubMed  CAS  Google Scholar 

  99. Hasslacher C, Schlueter V, Ruderich F, Koops S. Influence of anaemia on loss of kidney function of proteinuric type 1 and type 2 diabetic patients. Diabetologia. 2002;45(Suppl. 2):A363 (abstract)

    Google Scholar 

  100. Iseki K, Ikemiya Y, Iseki C, Takishita S. Haematocrit and the risk of developing end-stage renal disease. Nephrol Dial Transplant. 2003;18:899–905

    Article  PubMed  Google Scholar 

  101. Hörl WH. Oxidant Stress. Hagerstown: Lippincott, Williams & Wilkins, 2004 (In press)

    Google Scholar 

  102. Sommerburg O, Grune T, Hampl H. Does long-term treatment of renal anemia with recombinant erythropoietin influence oxidative stress in haemodialyzed patients. Nephrol Dial Transplant. 1998;13:2538–87

    Article  Google Scholar 

  103. Klemm A, Voigt C, Friedrich M et al. Determination of erythrocyte antioxidant capacity in haemodialysis patients using electron paramagnetic resonance. Nephrol Dial Transplant. 2001;16:2166–71

    Article  PubMed  CAS  Google Scholar 

  104. Halliwell B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic Res. 1999;31:261–72

    Article  PubMed  CAS  Google Scholar 

  105. Marui N, Offerman MK, Swerlick R et al. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest. 1993;92:1866–74

    Article  PubMed  CAS  Google Scholar 

  106. Parhami F, Fang ZT, Fogelman AM. Minimally modified low density lipoprotein-induced inflammatory responses in endothelial cells are mediated by cyclic adenosine monophosphate. J Clin Invest. 1993;92:471–8

    Article  PubMed  CAS  Google Scholar 

  107. Fandrey J, Genius J. Reactive oxygen species as regulators of oxygen dependent gene expression. Adv Exp Med Biol. 2000;475:153–9

    Article  PubMed  CAS  Google Scholar 

  108. Sandau KB, Zhou J, Kietzmann T, Brüne B. Regulation of the hypoxia-inducible factor 1α by the inflammatory mediators nitric oxide and tumor necrosis factor-α in contrast to desferroxamine and phenylarsine oxide. J Bioc Chem. 2001;276:39805–11

    Article  CAS  Google Scholar 

  109. Haddad JJ. Recombinant human interleukin (IL)- 1 betamediated regulation of hypoxia-inducible factor- 1 alpha (HIF- 1 alpha) stabilization, nuclear translocation and activation requires an antioxidant/reactive oxygen species (ROS)-sensitive mechanism. Eur Cytokine Netw. 2002; 13:250–60

    PubMed  CAS  Google Scholar 

  110. Yang B, Johnson TS, Thomas GL et al. Expression of apoptosis-related genes and proteins in experimental chronic renal scarring. J Am Soc Nephrol. 2001;12:275–88

    PubMed  CAS  Google Scholar 

  111. Kagedal K, Johansson U, Ollinger K. The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. FASEB J. 2001;15:1592–4

    PubMed  CAS  Google Scholar 

  112. Yang B, Johnson TS, Thomas GL et al. Apoptosis and caspase-3 in experimental anti-glomerular basement membrane nephritis. J Am Soc Nephrol. 2001;12:485–95

    PubMed  CAS  Google Scholar 

  113. Berns JS, Rudnick MR, Cohen RM, Bower JD, Wood BC. Effects of normal hematocrit on ambulatory blood pressure in epoetin-treated hemodialysis patients with cardiac disease. Kidney Int. 1999;56:253–60

    Article  PubMed  CAS  Google Scholar 

  114. Conlon PJ, Kovalik E, Schumm D, Minda S, Schwab SJ. Normalization of hematocrit in hemodialysis patients with cardiac disease does not increase blood pressure. Ren Fail. 2000;4:435–44

    Article  Google Scholar 

  115. Paulitschke M, Ludat K, Riedel E, Hampl H. Long-term effects of rhuEPO therapy on erythrocyte rheology in dialysis patients with different target hematocrits. Clin Nephrol. 2000;53:536–41

    Google Scholar 

  116. Hörl WH, Jacobs C, Macdougall IC et al. European Best Practice Guidelines 17–18: Adverse effects. Nephrol Dial Transplant. 2000;15(Suppl. 4):51–6

    Article  PubMed  Google Scholar 

  117. Culp K, Flanigan M, Taylor L, Rothstein M. Vascular access thrombosis in new hemodialysis patients. Am J Kidney Dis. 1995;26:341–6

    Article  PubMed  CAS  Google Scholar 

  118. Wiesholzer M, Kitzwögerer M, Harm F et al. Prevalence of preterminal pulmonary thromboembolism among patients on maintenance hemodialysis treatment before and after introduction of recombinant erythropoietin. Am J Kidney Dis. 1999;33:702–8

    Article  PubMed  CAS  Google Scholar 

  119. Madore F, Lowrie EG, Brugnara C et al. Anemia in hemodialysis patients. Variables affecting this outcome predictor. J Am Soc Nephrol. 1997;8:1921–9

    PubMed  CAS  Google Scholar 

  120. Ifudu O, Uribarri J, Rajwani I et al. Adequacy of dialysis and differences in hematocrit among dialysis facilities. Am J Kidney Dis. 2000;36:1166–74

    Article  PubMed  CAS  Google Scholar 

  121. Ifudu O. Evidence that adequacy of dialysis modulates uremic anemia. Nephron. 2001;88:1–5

    Article  PubMed  CAS  Google Scholar 

  122. Movilli E, Cancarini GC, Zani R et al. Adequacy of dialysis reduces the doses of recombinant erythropoietin independently from use of biocompatible membranes in haemodialysis patients. Nephrol Dial Transplant. 2001; 16:111–14

    Article  PubMed  CAS  Google Scholar 

  123. Coladonato JA, Frankenfield DL, Reddan DN et al. Trends in anemia management among US hemodialysis patients. J Am Soc Nephrol. 2002;13:1288–95

    Article  PubMed  Google Scholar 

  124. Frankenfield D, Johnson CA, Wish JB, Rocco MV, Madore F, Owen WH Jr for the ESRP Core Indications Work Group. Anemia management of adult hemodialysis patients in the US: results from the 1997 ESRD core indicators project. Kidney Int. 2000;57:578–89

    Article  PubMed  CAS  Google Scholar 

  125. Ifudu O, Friedman EA. Effect of increased hemodialysis dose on endogenous erythropoietin production in end-stage renal disease. Nephron. 1998;79:50–4

    Article  PubMed  CAS  Google Scholar 

  126. Petronis KR, Carroll CE, Held PJ, Port FK. Effect of race on access to recombinant human erythropoietin in longterm hemodialysis patients. J Am Med Assoc. 1994; 271:1760–3.

    Article  CAS  Google Scholar 

  127. Jansen MA, Hart AA, Korevaar JC, Dekker FW, Boeschoten EW, Krediet RT, NECOSAD Study Group. Predictors of the rate of decline of residual renal function in incident dialysis patients. Kidney Int. 2002;62:1046–53

    Article  PubMed  Google Scholar 

  128. Termorhuizen F, Korevaar JC, Dekker FW et al. The relative importance of residual renal function compared with peritoneal clearance for patient survival and quality of life: an analysis of the Netherlands cooperative study on the adequacy of dialysis (Necosad). Am J Kidney Dis. 2003;41:1293–302

    Article  Google Scholar 

  129. Wang AY, Wang M, Woo J et al. A novel association between residual renal function and left ventricular hypertrophy in peritoneal dialysis patients. Kidney Int. 2002; 62:639–47

    Article  PubMed  Google Scholar 

  130. House A, Pham B, Page DE. Transfusion and recombinant human erythropoietin requirements differ between dialysis modalities. Nephrol Dial Transplant. 1998;13:1763–9

    Article  PubMed  CAS  Google Scholar 

  131. Locatelli F, Andrulli S, Pecchini F et al. Effect of high-flux dialysis on the anaemia of haemodialysis patients. Nephrol Dial Transplant. 2000;15:1399–409

    Article  PubMed  CAS  Google Scholar 

  132. Yamada S, Kataoka H, Kobayashi H, Ono T, Minakuchi J, Kawano Y. Identification of an erythropoietic inhibitor from the dialysate collected in the hemodialysis with PMMA membrane (BK-F). Contrib Nephrol. 1999;125:159–72

    Article  PubMed  CAS  Google Scholar 

  133. Vanholder R, De Smet R, Lameire N. Protein-bound uremic solutes: the forgotten toxins. Kidney Int. 2001;78:S266–70

    Article  Google Scholar 

  134. Krieter DH, Canaud B. High permeability of dialysis membranes: what is the limit of albumin loss? Nephrol Dial Transplant. 2003;18:651–4

    Article  PubMed  CAS  Google Scholar 

  135. Macdougall IC. Role of uremic toxins in exacerbating anemia in renal failure. Kidney Int. 2001;59(Suppl. 78):S67–72

    Article  Google Scholar 

  136. Bajo MA, Selgas R, Miranda B et al. Medium term response to H-R erythropoietin in CAPD patients: the influence of erythropoietin plasmatic levels and the effects on peritoneal transport capacity. Adv Pert Dial. 1991;7:296–300

    CAS  Google Scholar 

  137. Sitter T, Bergner A, Schiffl H. Dialysate related cytokine induction and response to recombinant human erythropoietin in haemodialysis patients. Nephrol Dial Transplant. 2000;15:1207–11

    Article  PubMed  CAS  Google Scholar 

  138. Maduell F, del Pozo C, Garcia H et al. Change from conventional haemodiafiltration to on-line haemodiafiltration. Nephrol Dial Transplant. 1999;14:1202–7

    Article  PubMed  CAS  Google Scholar 

  139. Eiselt J, Racek J, Opatrny K Jr. The effect of hemodialysis and acetate-free biofiltration on anemia. Int J Artif Organs. 2000;23:173–80

    PubMed  CAS  Google Scholar 

  140. Bonforte G, Grillo P, Zerbi S, Surian M. Improvement of anemia in hemodialysis patients treated by hemodiafiltration with high-volume on-line-prepared substitution fluid. Blood Purif. 2002;20:357–63

    Article  PubMed  CAS  Google Scholar 

  141. Lin CL, Huang CC, Yu CC et al. Improved iron utilization and reduced erythropoietin resistance by on-line hemodiafiltration. Blood Purif. 2002;20:349–56

    Article  PubMed  CAS  Google Scholar 

  142. Fagugli RM, Buoncristiani U, Ciao G. Anaemia and blood pressure correction obtained by daily haemodialysis induce a reduction of left ventricular hypertrophy in dialysed patients. Int J Artif Org. 1998;21:429–31

    CAS  Google Scholar 

  143. Woods JD, Port FK, Orzol S et al. Clinical and biochemical correlates of starting ‘daily’ hemodialysis. Kidney Int. 1999;55:2467–76

    Article  PubMed  CAS  Google Scholar 

  144. Lockridge RS, Anderson HK, Coffey LT et al. Nightly home hemodialysis in Lynchburgh, Virginia: economic and logistic considerations. Semin Dial. 1999;12:440–7

    Article  Google Scholar 

  145. Klarenbach S, Heidenheim AP, Leitch R, Lindsay RM. The daily/nocturnal dialysis study group. Reduced requirement for erythropoietin with quotidian haemodialysis therapy. ASAIO J. 2002;48:57–61

    Article  PubMed  CAS  Google Scholar 

  146. Koury ST, Bondurant MS, Koury JM. Localization of erythropoietin synthesizing cells in murine kidney by in situ hybridization. Blood. 1988;71:524–37.

    PubMed  CAS  Google Scholar 

  147. Dordal MS, Wang FF, Goldwasser E. The role of carbohydrate in erythropoietin action. Endocrinology. 1985; 116:2293–9

    Article  PubMed  CAS  Google Scholar 

  148. Cheetham JC, Smith DM, Aoki KH et al. NMR structure of human erythropoietin and a comparison with its receptor bound conformation. Nat Struct Biol. 1998;5:861–6

    Article  PubMed  CAS  Google Scholar 

  149. Syed RS, Reid SW, Li C et al. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature. 1998;395:511–16

    Article  PubMed  CAS  Google Scholar 

  150. Yamaguchi K, Akai K, Kawanishi G, Ueda M, Masuda S, Sasaki R. Effects of site-directed removal of N-glycosylation sites in human erythropoietin on its production and biological properties. J Biol Chem. 1991;266:20434–9

    PubMed  CAS  Google Scholar 

  151. Takeuchi M, Takasaki S, Shimada M, Kobata R. Role of sugar chains in the in vitro biological activity of human erythropoietin produced in Chinese hamster ovary cell. J Biol Chem. 1990;265:12127–30

    PubMed  CAS  Google Scholar 

  152. Wasley LC, Timony G, Murtha P et al. The importance of N- and O-linked oligosaccharides for the biosynthesis and in vitro and in vivo biologic activities of erythropoietin. Blood. 1991;77:2624–32

    PubMed  CAS  Google Scholar 

  153. Egrie JC, Browne JK. Development and characterization of novel erythropoiesis stimulating protein (NESP). Br J Cancer. 2001;84(Suppl. 1):3–10

    Article  PubMed  CAS  Google Scholar 

  154. Macdougall IC, Roberts DE, Coles GA, Williams JD. Clinical pharmacokinetics of epoetin (recombinant human erythropoietin). Clin Pharmacokinet. 1991;20:99–113

    Article  PubMed  CAS  Google Scholar 

  155. Veng-Pedersen P, Widness JA, Pereira LM, Peters C, Schmidt RL, Lowe LS. Kinetic evaluation of nonlinear drug elemination by a disposition decomposition analysis. Application to the analysis of the nonlinear elimination kinetics of erythropoietin in adult humans. J Pharm Sci. 1995;84:760–7

    Article  PubMed  CAS  Google Scholar 

  156. Chapel SH, Veng-Pedersen P, Schmidt RL, Widness JA. Receptor-based model accounts for phlebotomy-induced changes in erythropoietin pharmacokinetics. Exp Hematol. 2001;29:425–31

    Article  PubMed  CAS  Google Scholar 

  157. Jelkmann W. The enigma of the metabolic fate of circulating erythropoietin (Epo) in view of the pharmacokinetics of the recombinant drugs rhEpo and NESP. Eur J Haematol. 2002;69:265–74

    Article  PubMed  CAS  Google Scholar 

  158. Sasaki H, Bothner B, Dell A, Fukuda M. Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J Biol Chem. 1987;262:12059–76

    PubMed  CAS  Google Scholar 

  159. Skibeli V, Nissen-Lie G, Torjesen P. Sugar profiling proves that human serum erythropoietin differs from recombinant human erythropoietin. Blood. 2001;98:3626–34

    Article  PubMed  CAS  Google Scholar 

  160. Storring PL, Tiplady RJ, Gaines Das RE et al. Epoetin alfa and beta differ in their erythropoietin isoform composition and biological properties. Br J Haematol. 1998;100: 79–89

    Article  PubMed  CAS  Google Scholar 

  161. Toyoda T, Itai T, Arakawa T, Aoki K, Yamaguchi H. Stabilization of human recombinant erythropoietin through interactions with the highly branched N-glycans. J Biochem (Toyko). 2000;128:731–7

    Article  CAS  Google Scholar 

  162. Stockenhuber F, Loibl U, Gottsauner-Wolf M et al. Pharmacokinetics and dose response after intravenous and subcutaneous administration of recombinant erythropoietin in patients on regular haemodialysis treatment or continuous ambulatory peritoneal dialysis. Nephron. 1991; 59:399–402

    Article  PubMed  CAS  Google Scholar 

  163. Nimtz M, Martin W, Wray V, Kloppel KD, Augustin J, Conradt H. Structures of sialylated oligosacharides of human erythropoietin expressed in recombinant BHK-21 cells. Eur J Biochem. 1993;213:39–56

    Article  PubMed  CAS  Google Scholar 

  164. Nimtz M, Wray V, Rudiger A, Conradt HS. Identification and structural characterization of a mannose-6-phosphate containing oligomannosidic N-glycan from human erythropoietin secreted by recombinant BHK-21 cells. FEBS Lett. 1995;365:203–8

    Article  PubMed  CAS  Google Scholar 

  165. Macdougall IC, Gray SJ, Elston O et al. Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J Am Soc Nephrol. 1999; 10:2392–5

    PubMed  CAS  Google Scholar 

  166. Allon M, Kleinman K, Walczyk M et al. Pharmacokinetics and pharmacodynamics of darbepoetin alfa and epoetin in patients undergoing dialysis. Clin Pharmacol Ther. 2002;72: 546–55

    Article  PubMed  CAS  Google Scholar 

  167. Muirhead N, Churchill DN, Goldstein M et al. Comparison of subcutaneous and intravenous recombinant human erythropoietin for anemia in hemodialysis patients with significant comorbid disease. Am J Nephrol. 1992;12: 303–10

    Article  PubMed  CAS  Google Scholar 

  168. Schaller R, Sperschneider H, Thieler H et al. Differences in intravenous and subcutaneous application of recombinant human erythropoietin: a multicenter trial. Artif Organs. 1994;18:552–8

    Article  PubMed  CAS  Google Scholar 

  169. Albitar S, Meulders Q, Hammoud H et al. Subcutaneous versus intravenous administration of erythropoietin improves its efficiency for the treatment of anaemia in haemodialysis patients. Nephrol Dial Transplant. 1995; 10(Suppl. 6):40–3

    Article  PubMed  Google Scholar 

  170. Canaud BC, Bennhold I, Delon S et al. What is the optimum frequency of administration of r-HuEPO for correcting anemia in hemodialysis patients? Dial Transplant. 1995; 24:306–29

    Google Scholar 

  171. Virot JS, Janin G, Guillaumie J et al. Must erythropoietin be injected by the subcutaneous route for every hemodialyzed patient? Am J Kidney Dis. 1996;28:400–8

    Article  PubMed  CAS  Google Scholar 

  172. Kaufman JS, Reda DJ, Fye CL et al. Subcutaneous compared with intravenous epoetin in patients receiving hemodialysis. Department of Veterans Affairs Cooperative Study Group on Erythropoietin in Hemodialysis Patients. N Engl J Med. 1998;339:578–83

    Article  PubMed  CAS  Google Scholar 

  173. Vanrenterghem Y, Barany P, Mann JF et al. Randomized trial of darbepoetin alfa for treatment of renal anemia at a reduced dose frequencey compared with rHuEPO in dialysis patients. Kidney Int. 2002;62:2167–75

    Article  PubMed  CAS  Google Scholar 

  174. Salmonson P. Pharmacokinetic and pharmacodynamic studies on recombinant human erythropoietin. Scand J Urol Nephrol Suppl. 1990;129:1–6

    PubMed  CAS  Google Scholar 

  175. Macdougall IC, Roberts DE, Coles GA, Williams JD. Clinical pharmacokinetics of epoetin (recombinant human erythropoietin). Clin Pharmacokinet. 1991;20:99–113

    Article  PubMed  CAS  Google Scholar 

  176. Besarab A, Reyes CM, Hornberger J. Meta-analysis of subcutaneous versus intravenous epoetin in maintenance treatment of anemia in hemodialysis patients. Am J Kidney Dis. 2002;40:439–46

    Article  PubMed  CAS  Google Scholar 

  177. Jacobs C, Hörl WH, Macdougall IC et al. European Best Practice Guidelines 9–13; anaemia management. Nephrol Dial Transplant. 2000;15(Suppl. 4):33–42

    Article  PubMed  Google Scholar 

  178. McClellan WM, Frankenfield DL, Wish JB et al. End-Stage Renal Disease Core Indicators Work Group. Subcutaneous erythropoietin results in lower dose and equivalent hematocrit levels among adult hemodialysis patients: results from the 1998 End-stage Renal Disease Core Indicators Project. Am J Kidney Dis. 2001;37:E36

    Article  Google Scholar 

  179. Taylor JE, Belch JJ, Fleming LW et al. Erythropoietin response and route of administration. Clin Nephrol. 1994;41: 297–302

    PubMed  CAS  Google Scholar 

  180. Sunder-Plassmann G, Hörl WH. Importance of iron supply for erythropoietin therapy. Nephrol Dial Transplant. 1995;10:2070–6

    PubMed  CAS  Google Scholar 

  181. De Schoenmakere G, Lameire N, Dhondt A et al. The haematopoietic effect of recombinant human erythropoietin in haemodialysis is independent of the mode of administration (iv. or s.c.). Nephrol Dial Transplant. 1998;13: 1770–5

    Article  PubMed  Google Scholar 

  182. Weiss LG, Clyne N, Fihlho JD et al. The efficacy of once weekly compared with two or three times weekly subcutaneous epotin β: results from a randomized controlled multicentre trial. Nephrol Dial Transplant. 2000;15: 2014–19

    Article  PubMed  CAS  Google Scholar 

  183. Locatelli F, Baldamus CA, Villa G, Ganea A, Martin de Francisco AL. One-weekly compared with three-times weekly subcutaneous epoetin beta: results from a randomized, multicenter, therapeutic-equivalence study. Am J Kidney Dis. 2002;40:119–25

    Article  PubMed  CAS  Google Scholar 

  184. Eschbach JW. Treatment of anemia of chronic kidney disease. Am J Kidney Dis. 2001;37:191–4

    Article  Google Scholar 

  185. Yu AW, Leung CB, Li PK, Lui SF, Lai KN. Pain perception following subcutaneous injections of citrate-buffered and phosphate-buffered epoetin alpha. Int J Artif Organs. 1998; 21:341–3

    PubMed  CAS  Google Scholar 

  186. Veys N, Dhondt A, Lameire N. Pain at the injection site of subcutaneously administered erythropoietin: phosphatebuffered epoetin alpha compared to citrate-buffered epoetin alpha and epoetin beta. Clin Nephrol. 1998;49:41–4

    PubMed  CAS  Google Scholar 

  187. St Peter WL, Lewis MJ, Macres MG. Pain comparison after subcutaneous administration of single-dose formulation versus multidose formulation of epogen in hemodialysis patients. Am J Kidney Dis. 1998;32:470–4

    Article  CAS  Google Scholar 

  188. Besarab A. Physiological and pharmacodynamic considerations for route of EPO administration. Semin Nephrol. 2000;20:364–74

    PubMed  CAS  Google Scholar 

  189. Besarab A, Flaharty KK, Erslev AJ et al. Clinical pharmacology and economics of recombinant erythropoietin in endstage renal disease: the case for subcutaneous administration. J Am Soc Nephrol. 1992;2:1405–16.

    PubMed  CAS  Google Scholar 

  190. Cheung W, Minton N, Gunawardena K. Pharmacokinetics and pharmacodynamics of epoetin alfa once weekly and three times weekly. Eur J Clin Pharmacol. 2001;57:411–18.

    Article  PubMed  CAS  Google Scholar 

  191. Piccoli A, Malagoli A, Komninos G, Pastor G. Subcutaneous epoetin-alpha every one, two and three weeks in renal anemia. J Nephrol. 2002;15:565–74.

    PubMed  CAS  Google Scholar 

  192. Grzeszczak W, Sulowicz W, Rutowski B et al., on behalf of the European Collaborative Group. Once weekly and once fortnightly (every two weeks) subcutaneous epoetin beta is effective in PD patients with chronic renal anaemia. Nephrol Dial Transplant. 2002;17(Suppl. 1):24 (abstract 076).

    Google Scholar 

  193. Acharya VN, Sinha DK, Almeida AF, Pathare AV. Effect of low dose recombinant human omega erythropoietin (rHuEPO) on anaemia in patients on hemodialysis. J Assoc Phys India. 1995;43:539–42.

    CAS  Google Scholar 

  194. Sikole A, Spasovski G, Zafirov D, Polenakovic M. Epoetin omega for treatment of anemia in maintenance hemodialysis patients. Clin Nephrol. 2002;57:237–45.

    PubMed  CAS  Google Scholar 

  195. Bren A, Kandus A, Varl J et al. A comparison between epoetin omega and epoetin alfa in the correction of anemia in hemodialyisis patients: a prospective, controlled crossover study. Artif Organs. 2002;26:91–7.

    Article  PubMed  CAS  Google Scholar 

  196. Milutinovic S, Plavljanic D, Orsanic D. Once weekly erythropoietin omega is safe and effective in treatment of anemia in dialysis patients. J Am Soc Nephrol. 2002;13:463A (abstract).

    Google Scholar 

  197. Locatelli F, Olivares J, Walker R, Wilkie M and the European/Australian NESP 980202 Study Group. Novel erythropoiesis stimulating protein (NESP) administered subcutaneously corrects anemia in subjects with chronic renal insufficiency (CRI) when administered at a reduced dose frequency compared with recombinant-human erythropoietin (r-HuEPO). J Am Soc Nephrol. 2000;11:A1486 (abstract).

    Google Scholar 

  198. Macdougall IC, Matcham J, Gray SJ. Correction of anaemia with darbepoetin alpha in patients with chronic kidney disease receiving dialysis. Nephrol Dial Transplant. 2003; 18:576–81.

    Article  PubMed  CAS  Google Scholar 

  199. Aljama P, Bommer J, Canaud B et al. Practical guidelines for the use of NESP in treating renal anaemia. Nephrol Dial Transplant. 2001;16 (Suppl. 3):22–8.

    Article  PubMed  CAS  Google Scholar 

  200. Nissenson AR, Swan SK, Lindberg JS et al. Randomized, controlled trial of darbepoetin alfa for the treatment of anemia in hemodialysis patients. Am J Kidney Dis. 2002; 40:110–18.

    Article  PubMed  CAS  Google Scholar 

  201. Nissenson AR, Swan SK, Lindberg JS et al. Randomized, controlled trial of darbepoetin alfa for the treatment of anemia in hemodialysis patients. Am J Kidney Dis. 2002; 40:110–18.

    Article  PubMed  CAS  Google Scholar 

  202. Hörl WH, Holzer H, Mayer GJ. Behandlung der renalen Anämie mit Darbepoetin alfa — Ergebnisse einer österreichischen Multicenter-Studie. Wien Klin Wochenschr. 2002; 114:967–71.

    PubMed  Google Scholar 

  203. Nissenson AR. Dosing darbepoetin alfa. Am J Kidney Dis. 2002;40:872 (letter).

    Article  PubMed  Google Scholar 

  204. Scott SD. Dose conversion from recombinant human erythropoietin to darbepoetin alfa: recommendations from clinical studies. Pharmacotherapy. 2002;22:160–5S.

    Article  Google Scholar 

  205. Cheung WK, Goon BL, Guilfoyle MC, Wacholtz MC. Pharmacokinetics and pharmacodynamics of recombinant human erythropoietin after single and multiple subcutaneous doses to healthy subjects. Clin Pharmacol Ther. 1998;64: 412–23.

    Article  PubMed  CAS  Google Scholar 

  206. Eschbach JW, Abdulhadi MH, Browne JK et al. Recombinant human erythropoietin in anemic patients with end-stage renal disease. Results of a phase III multicenter clinical trial. Ann Intern Med. 1989;111:992–1000.

    Article  PubMed  CAS  Google Scholar 

  207. Walker R, on behalf of the European/Australian 20000144 Study Group. AranespTM (Darbepoetin alfa) administered at a reduced frequency of once every 4 weeks (Q4W) maintains hemoglobin levels in patients with chronic kidney disease (CKD) receiving dialysis. Am J Kidney Dis. 2002;39:A33 (abstract).

    Google Scholar 

  208. Sunder-Plassmann G, Hörl WH. Erythropoietin and iron. Clin Nephrol. 1997;47:141–57.

    PubMed  CAS  Google Scholar 

  209. Macdougall IC, Cavill I, Hulme B et al. Detection of functional iron deficiency during erythropoietin treatment: a new approach. Br Med J. 1992;304:225–6.

    Article  CAS  Google Scholar 

  210. Braun J, Lindner K, Schreiber M, Heidler A, Hörl WH. Percentage of hypochromic red cells as predictor of erythropoietic and iron response after iv. iron supplementation in maintenance haemodialysis patients. Nephrol Dial Transplant. 1997;12:1173–81

    Article  PubMed  CAS  Google Scholar 

  211. Cullen P, Söffker J, Höpfl M et al. Hypochromic red cells and reticulocyte haemoglobin content as markers of irondeficient erythropoiesis in patients undergoing chronic haemodialysis. Nephrol Dial Transplant. 1999;14:659–65

    Article  PubMed  CAS  Google Scholar 

  212. Jones CH, Richardson D, Ayers S, Newstaed CG, Will EJ, Davison AM. Percentage hypochromic red cells and the response to intravenous iron therapy in anaemic haemodialysis patients. Nephrol Dial Transplant. 1998;13:2873–6

    Article  PubMed  CAS  Google Scholar 

  213. Tessitore N, Solero GP, Lippi G et al. The role of iron status markers in predicting response to intravenous iron in haemodialysis patients on maintenance erythropoietin. Nephrol Dial Transplant. 2001;16:1416–23

    Article  PubMed  CAS  Google Scholar 

  214. Lorenz M, Kletzmayr J, Perschl A, Furrer A, Hörl WH, Sunder-Plassmann G. Anemia and iron deficiency in longterm renal transplant patients. J Am Soc Nephrol. 2002; 13:794–7

    PubMed  Google Scholar 

  215. Bovy C, Tsobo C, Crapanzano L et al. Factors determining the percentage of hypochromic red blood cells in hemodialysis patients. Kidney Int. 1999;56:1113–19.

    Article  PubMed  CAS  Google Scholar 

  216. Fishbane S, Shapiro W, Dutka P, Valenzuela OF, Faubert J. A randomized trial of iron deficiency testing strategies in hemodialyis patients. Kidney Int. 2001;60: 2405–11

    Article  Google Scholar 

  217. Besarab A. Evaluating iron sufficiency: a clearer view. Kidney Int. 2001;60:2412–14

    Article  PubMed  CAS  Google Scholar 

  218. Chuang C-L, Liu R-S, Wie Y-H, Huang T-P, Tarng D-C. Early prediction of response to intravenous iron supplementation by reticulocyte haemoglobin content and highfluorescence reticulocyte count in haemodialysis patients. Nephrol Dial Transplant. 2003;18:370–7

    Article  PubMed  CAS  Google Scholar 

  219. Baynes RD. Refining the assessment of body iron status. Am J Clin Nutr. 1996;64:793–4

    PubMed  CAS  Google Scholar 

  220. Cook JD, Skikne BS, Baynes RD. Serum transferrin receptor. Annu Rev Med. 1993;44:63–74

    Article  PubMed  CAS  Google Scholar 

  221. Ferguson BJ, Skikne BS, Simpson KM, Baynes RD, Cook JD. Serum transferrin receptor distinguishes the anemia of chronic disease from iron deficiency anemia. J Lab Clin Med. 1992;119:385–90

    PubMed  CAS  Google Scholar 

  222. Cooper MJ, Zlotkin SH. Day-to-day variation of transferrin receptor and ferritin in healthy men and women. Am J Clin Nutr. 1996;64:738–42

    PubMed  CAS  Google Scholar 

  223. Eschbach JW, Haley NR, Egrie JC, Adamson JW. A comparison of the responses to recombinant human erythropoietin in normal and uremic subjects. Kidney Int. 1992;42:407–16

    Article  PubMed  CAS  Google Scholar 

  224. Sunder-Plassmann G, Spitzauer S, Hörl WH. The dilemma of evaluating iron status in dialysis patients. Limitations of available diagnostic procedures. Nephrol Dial Transplant. 1997;12:1575–80

    Article  PubMed  CAS  Google Scholar 

  225. Weiss G, Houston T, Kastner S, Jöhrer K, Grünewald K, Brock JH. Regulation of cellular iron metabolism by erythropoietin: activation of iron-regulatory protein and upregulation of transferrin receptor expression in erythroid cells. Blood. 1997;89:680–7

    PubMed  CAS  Google Scholar 

  226. Huebers HA, Beguin Y, Pootrakul P, Einspahr D, Finch CA. Intact transferrin receptors in human plasma and their relation to erythropoiesis. Blood. 1990; 75:102–7

    PubMed  CAS  Google Scholar 

  227. Beguin Y, Clemons GK, Pootrakul P, Fillet C. Quantitative assessment of erythropoiesis and functional classification of anemia based on measurements of serum transferrin receptor and erythropoietin. Blood. 1993;81:1067–76

    PubMed  CAS  Google Scholar 

  228. Ponka P. Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood. 1997;89:1–25

    PubMed  CAS  Google Scholar 

  229. Drüeke TB, Barany P, Cazzola M et al. Management of iron deficiency in renal anemia: guidelines for the optimal therapeutic approach in erythropoietin-treated patients. Clin Nephrol. 1997;48:1–8

    PubMed  Google Scholar 

  230. Punnonen K, Irjala K, Rajamäki A. Serum transferrin receptor and its ratio to serum ferritin in the diagnosis of iron deficiency. Blood. 1997;89:1052–7

    PubMed  CAS  Google Scholar 

  231. Chiang WC, Tsai TJ, Chen YM, Lin SL, Hsieh BS. Serum soluble transferrin receptor reflects erythropoiesis but not iron availability in erythropoietin-treated chronic hemodialysis patients. Clin Nephrol. 2002;58:363–9

    PubMed  CAS  Google Scholar 

  232. Brittenham GM, Badman DG. Noninvasive measurement of iron: report of an NIDDK workshop. Blood. 2002 (www.bloodjournal.org)

  233. NKF-K/DOQI Clinical Practice Guidelines for Anemia of Chronic Kidney Disease. Update 2000. III. Iron Support. Am J Kidney Dis. 2001;37(Suppl. 1):S194–206

    Google Scholar 

  234. Hsu CY, McCulloch CE, Curhan GC. Iron status and hemoglobin level in chronic renal insufficiency. J Am Soc Nephrol. 2002;13:2783–6

    Article  PubMed  CAS  Google Scholar 

  235. Hudson JQ, Comstock TJ. Consideration for optimal iron use for anemia due to chronic kidney disease. Clin Ther. 2001;23:1637–71.

    Article  PubMed  CAS  Google Scholar 

  236. Kooistra MP, Niemantsverdriet EC, van Es AD, Mol Beermann NM, Struyvenberg A, Marx JJM. Iron absorption in erythropoietin-treated haemodialysis patients: effects of iron availability, inflammation and aluminium. Nephrol Dial Transplant. 1998;13:82–8

    Article  PubMed  CAS  Google Scholar 

  237. Kooistra MP, Marx JJM. The absorption of iron is disturbed in recombinant human erythropoietin-treated peritoneal dialysis patients. Nephrol Dial Transplant. 1998;13: 2578–82

    Article  PubMed  CAS  Google Scholar 

  238. Stoves J, Inglis H, Newstead CG. A randomized study of oral vs intravenous iron supplementation in patients with progressive renal insufficiency treated with erythropoietin. Nephrol Dial Transplant. 2001;16:967–74

    Article  PubMed  CAS  Google Scholar 

  239. Trivedi HS, Brooks BJ. Erythropoietin therapy in predialysis patients with chronic renal failure: lack of need for parenteral iron. Am J Nephrol. 2003;23:78–85

    Article  PubMed  CAS  Google Scholar 

  240. Dittrich E, Puttinger H, Schneider B, Hörl WH, Haag Weber M, Vychytil A. Is absorption of high-dose oral iron sufficient in peritoneal dialysis patients? Pert Dial Int. 2000;20:667–73

    CAS  Google Scholar 

  241. Ahsan N. Intravenous infusion of total dose iron is superior to oral in treatment of anemia in peritoneal dialysis patients: a single centre comparative study. J Am Soc Nephrol. 1998;9:664–8

    PubMed  CAS  Google Scholar 

  242. Hörl WH, Dreyling K, Steinhauer HB, Engelhardt R, Schollmeyer P. Iron status of dialysis patients under rhuEPO therapy. Contrib Nephrol. 1990;87:78–86

    PubMed  Google Scholar 

  243. Allegra V, Mengozzi G, Vasile A. Iron deficiency in maintenance hemodialysis patients: assessment of diagnosis criteria and of three different iron treatments. Nephron. 1991;57:175–82

    Article  PubMed  CAS  Google Scholar 

  244. Bergmann M, Grützmacher P, Heuser J, Kaltwasser JP. Iron metabolism under rhEPO therapy in patients on maintenance hemodialysis. Int J Artif Organs. 1990;13: 109–12

    PubMed  CAS  Google Scholar 

  245. Kooistra MP, van Es A, Struyvenberg A, Marx JJM. Iron metabolism in patients with the anemia of end-stage renal disease during treatment with recombinant human erythropoietin. Br J Haematol. 1991;79:634–9

    Article  PubMed  CAS  Google Scholar 

  246. Anastassiades EG, Horwarth G, Horwarth J et al. Monitoring of iron requirements in renal patients on erythropoietin. Nephrol Dial Transplant. 1993;8:846–53

    PubMed  CAS  Google Scholar 

  247. Dunea G, Swagel MA, Bodiwala U, Arruda JAL. Intradialytic oral iron therapy. Int J Artif Organs. 1994;17:261–4

    PubMed  CAS  Google Scholar 

  248. Wingard RL, Parker RA, Ismail N, Hakim RM. Efficacy of oral iron therapy in patients receiving recombinant human erythropoietin. Am J Kidney Dis. 1995;25:433–9

    Article  PubMed  CAS  Google Scholar 

  249. Fishbane S, Frei GL, Maesaka J. Reduction in recombinant human erythropoietin doses by the use of chronic intravenous iron supplementation. Am J Kidney Dis. 1995;26:41–6

    Article  PubMed  CAS  Google Scholar 

  250. Silverberg DS, Iaina A, Peer G et al. Intravenous iron supplementation for the treatment of the anemia of moderate to severe chronic renal failure patients not receiving dialysis. Am J Kidney Dis. 1996;27:234–8

    Article  PubMed  CAS  Google Scholar 

  251. Macdougall IC, Tucker B, Thompson J, Tomson CRV, Baker LRI, Raine AEG. A randomized controlled study of iron supplementation in patients treated with erythropoietin. Kidney Int. 1996;50:1694–9

    Article  PubMed  CAS  Google Scholar 

  252. Bailie GR, Johnson CA, Mason NA. Parenteral iron use in the management of anemia in end-stage renal disease patients. Am J Kidney Dis. 2000;35:1–12

    Article  PubMed  CAS  Google Scholar 

  253. Macdougall IC. Intravenous administration of iron in epoetin-treated haemodialysis patients — which drugs, which regimen? Nephrol Dial Transplant. 2000;15:1743–5

    Article  PubMed  CAS  Google Scholar 

  254. Jayakumar S, Jayakumar SA. Iron dextran anaphylactic-like reaction after a negative test dose and subsequent successful administration of three doses. Dial Transplant. 2000;29: 198–201.

    Google Scholar 

  255. Fletes R, Lazarus JM, Gag J, Chertow GM. Suspected iron dextran-related adverse drug events in hemodialysis patients. Am J Kidney Dis. 2001;37:743–9

    Article  PubMed  CAS  Google Scholar 

  256. Van Wyck DB, Cavallo G, Spinowitz BS et al. Safety and efficacy of iron sucrose in patients sensitive to iron dextran: North American clinical trial. Am J Kidney Dis. 2000;36: 88–97

    Article  PubMed  Google Scholar 

  257. Yee J, Besarab A. Iron sucrose: the oldest iron therapy becomes new. Am J Kidney Dis. 2000;40:1111–21

    Article  CAS  Google Scholar 

  258. Prakash S, Walele A, Dimkovic N, Bargman J, Vas S, Oreopoulos D. Experience with a large dose (500 mg) of iv dextran and saccharate in peritoneal dialysis patients. Perit Dial Int. 2001;21:290–5

    PubMed  CAS  Google Scholar 

  259. Chandler G, Harchowal J, Macdougall IC. Intravenous iron sucrose: establishing a safe dose. Am J Kidney Dis. 2001;38:988–91

    Article  PubMed  CAS  Google Scholar 

  260. Aggarwal HK, Tziviskou E, Bellizzi V et al. Prolonged administration over six hours of large doses of intravenous iron saccharate (500 mg) prevents severe adverse reactions in peritoneal dialysis patients. Pert Dial Int. 2002;22:636–7

    CAS  Google Scholar 

  261. Faich G, Strobos J. Sodium ferric gluconate complex in sucrose: safer intravenous iron therapy than iron dextran. Am J Kidney Dis. 1999;33:464–70

    Article  PubMed  CAS  Google Scholar 

  262. Eschbach JW, Strobos J. Sodium ferric gluconate complex (FerrlecitR): prospective experience in 1122 hemodialysis patients. J Am Soc Nephrol. 2000;11:249A

    Google Scholar 

  263. Coyne DA, Adkinson NF, Nissenson AR et al. Sodium ferric gluconate complex in hemodialysis patients. II. Adverse reactions iron dextran-sensitive and dextran-tolerant patients. Kidney Int. 2003;63:217–24

    Article  PubMed  CAS  Google Scholar 

  264. Folkert VW, Mchael B, Agarwal R et al. Ferrlecit Publication Committee. Chronic use of sodium ferric gluconate complex in hemodialysis patients: safety of higher-dose (> or = 250 mg) administration. Am J Kidney Dis. 2003;41:651–7

    Article  PubMed  CAS  Google Scholar 

  265. Michelis R, Gery R, Sela S et al. Carbonyl stress induced by intravenous iron during haemodialysis. Nephrol Dial Transplant. 2003;18:924–30

    Article  PubMed  CAS  Google Scholar 

  266. Deicher R, Ziai F, Cohen G, Mülllner M, Hörl WH. Highdose parenteral iron sucrose depresses neutrophil intracellular killing capacity. Kidney Int. 2003;64:728–36

    Article  PubMed  CAS  Google Scholar 

  267. Sengölge G, Kletzmayr J, Ferrara I, Perschl A, Hörl WH, Sunder-Plassmann G. Impairment of transendothelial leukocyte migration by iron complexes. J Am Soc Nephrol. 2003;14:2639–44

    Article  CAS  Google Scholar 

  268. Kosch M, Bahner U, Bettger H, Matzkies F, Teschner M, Schaefer RM. A randomized, controlled parallel-group trial an efficacy and safety of iron sucrose (VenoferR) vs. iron gluconate (FerrlecetinR) in haemodialysis patients treated with rHuEpo. Nephrol Dial Transplant. 2001;16:1239–44

    Article  PubMed  CAS  Google Scholar 

  269. Richardson D, Bartlett C, Jolly H, Will EJ. Intravenous iron for CAPD populations: proactive or reactive strategies? Nephrol Dial Transplant. 2001;16:115–19

    Article  PubMed  CAS  Google Scholar 

  270. Dittrich E, Schillinger M, Sunder-Plassmann G, Hörl WH, Vychytil A. Efficacy of low-dose intravenous iron sucrose regimen in peritoneal dialysis patients. Pert Dial Int. 2002;22:60–6

    Google Scholar 

  271. Hörl WH. Should we still use iron dextran in hemodialysis patients? Am J Kidney Dis. 2001;27:859–61

    Article  Google Scholar 

  272. Patruta SI, Edlinger R, Sunder-Plassmann G, Hörl WH. Neutrophil impairment associated with iron therapy in hemodialysis patients with functional iron deficiency. J Am Soc Nephrol. 1998;9:655–63

    PubMed  CAS  Google Scholar 

  273. Kletzmayr J, Hörl WH. Iron overload and cardiovascular complications in dialysis patients. Nephrol Dial Transplant. 2002;17(Suppl. 2):25–9

    Article  PubMed  CAS  Google Scholar 

  274. Sullivan JL. Iron and the sex differences in heart disease risk. Lancet. 1981;1:1293–4.

    Article  PubMed  CAS  Google Scholar 

  275. Meyers DG, Strickland D, Maloley PA, Seburg JK, Wilson JE, McManus BF. Possible association of a reduction in cardiovascular events with blood donation. Heart. 1997;78:188–93

    PubMed  CAS  Google Scholar 

  276. Salonen JT, Tuomainen TP, Salonen R, Lakka TA, Nyyssönen K. Donation of blood is associated with reduced risk of myocardial infarction. The Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Epidemiol. 1998;148: 445–51

    Article  PubMed  CAS  Google Scholar 

  277. Ascherio A, Rimm EB, Giovannucci E, Willet WC, Stampfer MJ. Blood donation and risk of coronary heart disease in men. Circulation. 2001;103:52–7

    Article  PubMed  CAS  Google Scholar 

  278. Kiechl S, Willeit J, Egger G, Poewe W, Oberhollenzer F. Body iron stores and the risk of carotid atherosclerosis: prospective results from the Bruneck study. Circulation. 1997;96:3300–7

    Article  PubMed  CAS  Google Scholar 

  279. Tuomainen TP, Punnonen K, Nyyssönen K, Salonen JT. Association between body iron stores and the risk of acute myocardial infarction in men. Circulation. 1998; 97:1461–6

    Article  PubMed  CAS  Google Scholar 

  280. Klipstein-Grobusch K, Koster JF, Grobbee DE et al. Serum ferritin and risk of acute myocardial infarction in the elderly: the Rotterdam Study. Am J Clin Nutr. 1999;69:1231–6

    PubMed  CAS  Google Scholar 

  281. Lee FY, Lee TS, Pan CC et al. Colocalization of iron and ceroid in human atherosclerosis lesions. Atherosclerosis. 1998;138:281–8

    Article  PubMed  CAS  Google Scholar 

  282. Kuryshev YA, Brittenham GM, Fujioka H et al. Decreased sodium and increased transient outward potassium currents in iron-loaded cardiac myocytes. Implications for the arrhythmogenesis of human siderotic heart disease. Circulation. 1999;100:675–83

    Article  PubMed  CAS  Google Scholar 

  283. Bartfay WJ, Butany J, Lehotay DC et al. A biochemical, histochemical and electron microscopic study on the effects of iron-loading on the hearts of mice. Cardiovasc Pathol. 1999;8:305–14

    Article  PubMed  CAS  Google Scholar 

  284. Link G, Konijn AM, Hershko C. Cardioprotective effects of alpha-tocopherol, ascorbate, deferoxamine, and deferiprone: mitochondrial function in cultured, iron-loaded heart cells. J Lab Clin Med. 1999;133:179–88

    Article  PubMed  CAS  Google Scholar 

  285. Roob JM, Khoschsorur G, Tiran A et al. Vitamin E attenuates oxidative stress induced by intravenous iron in patients on hemodialysis. J Am Soc Nephrol. 2000;11:539–49

    PubMed  CAS  Google Scholar 

  286. Kirk EA, Heinecke JW, Le Boeuf RC. Iron overload diminishes atherosclerosis in apoE-deficient mice. J Clin Invest. 2001;107:1545–53

    Article  PubMed  CAS  Google Scholar 

  287. Drüeke T, Witko-Sarsat V, Ziad M et al. Iron therapy, and advanced oxidation protein products and carotid artery intima-media thickness in end-stage renal disease. Circulation. 2002;106:2212–17

    Article  PubMed  Google Scholar 

  288. Tovbin D, Mazor D, Vorobiov M, Chaimovitz C, Meyerstein N. Induction of protein oxidation by intravenous iron in hemodialysis patients: role of inflammation. Am J Kidney Dis. 2002;40:1005–12

    Article  PubMed  CAS  Google Scholar 

  289. Kalantar-Zadeh K, Rodriguez R, Humphreys MH. Serum ferritin is a marker of morbidity and mortality in hemodialysis patients. Am J Kidney Dis. 2001;37:564–72

    Article  PubMed  CAS  Google Scholar 

  290. Kletzmayr J, Hörl WH. Iron overload and cardiovascular complications in dialysis patients. Nephrol Dial Transplant. 2002;17(Suppl. 2):27–32

    Article  Google Scholar 

  291. Feldman HI, Santanna J, Guo W et al. Iron administration and clinical outcomes in hemodialysis patients. J Am Soc Nephrol. 2002;13:734–44

    PubMed  CAS  Google Scholar 

  292. Födinger M. Sunder-Plassmann G. Inherited disorders of iron metabolism. Kidney Int. 1999;55(Suppl. 69):S22–34

    Article  Google Scholar 

  293. Roest M, van der Schouw YT, de Valk B et al. Heterozygosity for a hereditary hemochromatosis gene is associated with cardiovascular mortality in women. Circulation. 1999;100:1268–73.

    Article  PubMed  CAS  Google Scholar 

  294. Tuomainen TP, Kontula K, Nyyssönen K et al. Increased risk of acute myocardial infarction in carriers of the hemochromatosis gene Cys282Tyr mutation: a prospective cohort study in men in eastern Finland. Circulation. 1999;100: 1274–9

    Article  PubMed  CAS  Google Scholar 

  295. Sullivan JL. Iron and the genetics of cardiovascular disease. Circulation. 1999;100:1260–3

    Article  PubMed  CAS  Google Scholar 

  296. Rossi E, McQuillan BM, Hung J et al. Serum ferritin and C282Y mutation of the hemochromatosis gene as predictors of asymptomatic carotid atherosclerosis in a community population. Stroke. 2000;31:3015–20

    Article  PubMed  CAS  Google Scholar 

  297. Franco RF, Zago MA, Trip MD et al. Prevalence of hereditary hemachromatosis in premature atherosclerotic vascular disease. Br J Haematol. 1998;102:1172–5

    Article  PubMed  CAS  Google Scholar 

  298. Hetet G, Elbaz A, Gariepy J et al. Association studies between hemochromatosis gene mutations and the risk of cardiovascular diseases. Eur J Clin Invest. 2001;31: 382–8

    Article  PubMed  CAS  Google Scholar 

  299. Bosio S, De Gobbi M, Roetto A et al. Anemia and iron overload due to compound heterozygosity for novel ceruloplasmin mutations. Blood. 2002;100:2246–8

    Article  PubMed  CAS  Google Scholar 

  300. Sullivan JL, Zacharski LR. Hereditary haemachromatosis and the hypothesis that iron depletion protects against ischemic heart disease. Eur J Clin Invest. 2001;31:375–7

    Article  PubMed  CAS  Google Scholar 

  301. Salonen JT, Korpela H, Nyyssönen K et al. Association of body iron stores and the risk of acute myocardial infarction in men. Circulation. 1998;97:1461–6

    Article  PubMed  Google Scholar 

  302. Duffy SJ, Biegelsen ES, Holbrook M et al. Iron chelation improves endothelial function in patients with coronary artery disease. Circulation. 2001;103:2799–804

    Article  PubMed  CAS  Google Scholar 

  303. Pietrangelo A. Physiology of iron transport and the hemochromatosis gene. Am J Physiol Gastrintest Liver Physiol. 2002;282:G304–414

    Google Scholar 

  304. Fillebeen C, Pantopoulos K. Redox control of iron regulatory proteins. Redox Rep. 2002;7:15–25

    Article  PubMed  CAS  Google Scholar 

  305. Kim HJ, Kim SG. Alterations in cellular Ca2+ and free iron pool by sulfur amino acid deprivation: the role of ferritin light chain downregulation in prooxidant production. Biochem Pharmacol. 2002;63:647–57

    Article  PubMed  CAS  Google Scholar 

  306. Comporti M, Signorini C, Buonocore G, Ciccoli L. Iron release, oxidative stress and erythrocyte aging. Free Radic Biol Med. 2002;32:568–76

    Article  PubMed  CAS  Google Scholar 

  307. Sommerburg O, Grune T, Hampl H et al. Does long-term treatment of renal anaemia with recombinant erythropoietin influence oxidative stress in hemodialysed patients? Nephrol Dial Transplant. 1998;15:1743–5

    Google Scholar 

  308. Wang Q, Doerschuk CM. Neutrophil-induced changes in the biomechanical properties of endothelial cells: roles of ICAM-1 and reactive oxygen species. J Immunol. 2000;164: 6487–94

    PubMed  CAS  Google Scholar 

  309. Simonart T, Degraef C, Stordeur P et al. Iron induces Bc-2 expression in human dermal microvascular endothelial cells. Free Radic Res. 2001;34:221–35

    Article  PubMed  CAS  Google Scholar 

  310. Simonart T, Degraef C, Andrei G et al. Iron chelators inhibit the growth and induce the apoptosis of Kaposi ’s sarcoma cells and of their putative endothelial precursors. J Invest Dermatol. 2000;115:893–900

    Article  PubMed  CAS  Google Scholar 

  311. Tampo Y, Kotamraju S, Chitambar CR et al. Oxidative stress-induced iron signaling is responsible for peroxidedependent oxidation of dichlorodihydrofluorescein in endothelial cells: role of transferrin receptor-dependent iron uptake in apoptosis. Circ Res. 2003;92:56–63

    Article  PubMed  CAS  Google Scholar 

  312. Koo SW, Casper KA, Otto KB, Gira AK, Swerlick RA. Iron chelators inhibit VCAM-1 expression in human dermal microvascular endothelial cells. J Invest Dermatol. 2003;120: 871–9

    Article  PubMed  CAS  Google Scholar 

  313. Balla J, Vercellotti GM, Nath K et al. Haem, haem oxygenase and ferritin in vascular endothelial cell injury. Nephrol Dial Transplant. 2003;18(Suppl. 5):8–12.

    Article  Google Scholar 

  314. Visseren FL, Verkerk MS, van der Bruggen T, Marx JJ, van Asbeck BS, Diepersloot RJ. Iron chelation and hydroxyl radical scavenging reduce the inflammatory response of endothelial cells after infection with Chlamydia pneumoniae or influenza A. Eur J Clin Invest. 2002;32(Suppl. 1):84–90

    Article  PubMed  CAS  Google Scholar 

  315. Zager RA, Johnson AC, Hanson SY, Wasse H. Parenteral iron formulations: a comparative toxicologic analysis and mechanisms of cell injury. Am J Kidney Dis. 2002; 40:90–103

    Article  PubMed  CAS  Google Scholar 

  316. Zhou Xi, Laszik Z, Wang XQ, Silva FG, Vaziri ND. Association of renal injury with increased oxygen free radical activity and altered nitric oxide metabolism in chronic experimental hemosiderosis. Lab Invest. 2000;80:1905–14

    Article  Google Scholar 

  317. Hershko C. Iron and infection. In: Hallberg LAG, editor. Iron Nutrition in Health and Disease. New York: John Libbey, 1996:231–8

    Google Scholar 

  318. Olynyk JK, Clarke SL. Iron overload impairs pro-inflammatory cytokine responses by Kupffer cells. J Gastroenterol Hepatol. 2001;16:438–44

    Article  PubMed  CAS  Google Scholar 

  319. Nishiya K, Wang H, Tahara K, Hashimoto K. Enhancement by iron of interleukin 1 induced granulocyte macrophage colony stimulating factor (GM-CSF) production by human synovial fibroblasts. Ann Rheum Dis. 2003;62:89–90

    Article  PubMed  CAS  Google Scholar 

  320. Weiss G, Meusburger E, Radacher G, Garimorth K, Neyer U, Mayer G. Effect of iron treatment on circulating cytokine levels in ESRD patients receiving recombinant human erythropoietin. Kidney Int. 2003;64:572–8

    Article  PubMed  CAS  Google Scholar 

  321. Oexle H, Kaser A, Most J et al. Pathways for the regulation of interferon-gamma-inducible genes by iron in human monocytic cells. J Leukoc Biol. 2003;74:287–94

    Article  PubMed  CAS  Google Scholar 

  322. Rao DS, Shih MS, Mohini R. Effect of serum parathyroid hormone and bone marrow fibrosis on the response to erythropoietin in uremia. N Engl J Med. 1993;328:171–5

    Article  PubMed  CAS  Google Scholar 

  323. Zingraff J, Drüeke T, Marie P, Man NK, Jungers P, Bordier P. Anemia and secondary hyperparathyroidism. Arch Intern Med. 1978;138:1650–2

    Article  PubMed  CAS  Google Scholar 

  324. Barbour GL. Effect of parathyroidectomy on anemia in chronic renal failure. Arch Intern Med. 1979;139:889–91

    Article  PubMed  CAS  Google Scholar 

  325. Drüeke TB, Eckardt KU. Role of secondary hyperparathyroidism in erythropoietin resistance of chronic renal failure patients. Nephrol Dial Transplant. 2002;17(Suppl. 5):28–31

    Article  PubMed  Google Scholar 

  326. Yasunaga C, Matsuo K, Yanaigida T, Matsuo S, Nakamoto M, Goya T. Early effects of parathyroidectomy on erythropoietin production in secondary hyperparathyroidism. Am J Surg. 2002;183:199–204

    Article  PubMed  Google Scholar 

  327. Meytes D, Bogin E, Ma A, Dukes PP, Massry SG. Effect of parathyroid hormone on erythropoiesis. J Clin Invest. 1981; 67:1263–9

    Article  PubMed  CAS  Google Scholar 

  328. McGonigle RJS, Wallin JD, Husserl F et al. Potential role of parathyroid hormone as an inhibitor of erythropoiesis in the anemia of renal failure. J Lab Clin Med. 1984;104:1016–26

    PubMed  CAS  Google Scholar 

  329. Argiles A, Lorho R, Mourad G, Mion CM. High-dose alfacalcidol for anaemia in dialysis [letter]. Lancet. 1993;342:378–9

    Article  PubMed  CAS  Google Scholar 

  330. Albitar S, Genin R, Fen-Chong M, Serveaux MO, Schohn D, Chuet C. High-dose alfacalcidol improves anaemia in patients on haemodialyis. Nephrol Dial Transplant. 1997;12:514–18

    Article  PubMed  CAS  Google Scholar 

  331. Carozzi, S, Ramello A, Nasini MG et al. Ca and 1,25(OH)2D3 regulate in vitro and in vivo the response to human recombinant erythropoietin in CAPD patients. Adv Pert Dial. 1990;6:312–15

    CAS  Google Scholar 

  332. Sitrin MD, Bissonnette M, Bolt MJ et al. Rapid effects of 1,25(OH)2 vitamin D3 on signal transduction systems in colonic cells. Steroids. 1999;64:137–42

    Article  PubMed  CAS  Google Scholar 

  333. Kurella M, Butterly DW, Smith SR. Post transplant erythrocytes in hypercalcemic renal transplant recipients. Am J Transplant. 2003;3:873–7

    Article  PubMed  Google Scholar 

  334. Aucella F, Gatta G, Vigilante M et al. Calcitriol increases burst forming unit-erythroid (BFU-E) in vitro proliferation in chronic uremia. Synergic effect with DNA recombinant erythropoietin (rHu-Epo). Minerva Urol Nefrol. 2001;53:1–5

    PubMed  CAS  Google Scholar 

  335. Alon DB, Chaimovitz C, Dvilansky A et al. Novel role of 1,25(OH)2D3 in induction of erythroid progenitor cell proliferation. Exp Hematol. 2002;30:403–9

    Article  PubMed  Google Scholar 

  336. Christ ER, Cummings MH, Westwood NB et al. The importance of growth hormone in the regulation of erythropoiesis, red cell mass, and plasma volume in adults with growth hormone deficiency. J Clin Endocrinol Metab. 1997;82:2985–90

    Article  PubMed  CAS  Google Scholar 

  337. Sohmiya M, Kato Y. Effect of long-term administration of recombinant human growth hormone (rhGH) on plasma erythropoietin (EPO) and hemoglobin levels in anaemic patients with adult GH deficiency. Clin Endocrinol. 2001;55:749–54

    Article  CAS  Google Scholar 

  338. Iglesias P, Diez JJ, Fernandex-Reyes MJF et al. Recombinant human growth hormone therapy in malnourished dialysis patients: a randomized trial. Am J Kidney Dis. 1998;32:454–63

    Article  PubMed  CAS  Google Scholar 

  339. Johannsson G, Bengtsson BA, Ahlmen J. Double-blind, placebo-controlled study of growth hormone treatment in elderly patients undergoing chronic hemodialysis: anabolic effect and functional improvement. Am J Kidney Dis. 1999;33:709–17

    Article  PubMed  CAS  Google Scholar 

  340. Sohmiya M, Ishikawa K, Kato Y. Stimulation of erythropoietin secretion by continuous subcutaneous infusion of recombinant human GH in anemic patients with chronic renal failure. Eur J Endocrinol. 1998;138:302–6

    Article  PubMed  CAS  Google Scholar 

  341. Deicher R, Hörl WH. Anemia as a risk factor for the progression of chronic kidney disease. Curr Opin Nephrol Hypertens. 2003;12:139–43

    Article  PubMed  CAS  Google Scholar 

  342. Fisher J. Erythropoietin: physiology and pharmacology update. Exp Biol Med. 2003;228:1–14

    CAS  Google Scholar 

  343. Powell DR, Rosenfeld RG, Baker BK, Liu F, Hintz RL. Serum somatomedin levels in adults with chronic renal failure: the importance of measuring insulin-like growth factor-I (IGF-I) and IGF-II in acid-chromatographed uremic serum. J Clin Endocrinol Metab. 1986;63:1186–92

    Article  PubMed  CAS  Google Scholar 

  344. Goldberg AC, Trivedi B, Delmez JA, Harter HR, Daughaday WH. Uremia reduces serum insulin-like growth factor I, increases insulin like growth factor II, and modifies their serum protein binding. J Clin Endocrinol Metab. 1982;55:1040–5

    Article  PubMed  CAS  Google Scholar 

  345. Shih LY, Huang JY, Lee CT. Insulin-like growth factor I plays a role in regulating erythropoiesis in patients with endstage renal disease and erythrocytosis. J Am Soc Nephrol. 1999;10:315–22

    PubMed  CAS  Google Scholar 

  346. Urena P, Bonnardeaux A, Eckardt KU, Kurtz A, Drüeke TB. Insulin-like growth factor I: a modulator of erythropoiesis in uremic patients? Nephrol Dial Transplant. 1992;7:40–4

    PubMed  CAS  Google Scholar 

  347. Rajaram S, Baylink DJ, Mohan S. Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions. Endocrinol Rev. 1997;18: 801–31

    Article  CAS  Google Scholar 

  348. Phillips LS, Fusco AC, Unterman TG, del Greco F. Somatomedin inhibitor in uremia. J Clin Endocrinol Metab. 1984;59:764–74

    Article  PubMed  CAS  Google Scholar 

  349. Powell D, Rosenfeld R, Sperry J, Baker B, Hintz R. Serum concentration of insulin-like growth factor (IGF)-I, IGF-II and unsaturated somatomedin carrier proteins in children with chronic renal failure. Am J Kidney Dis. 1987;10: 287–92

    PubMed  CAS  Google Scholar 

  350. Brox AG, Zhang F, Guyda H, Gagnon RF. Subtherapeutic erythropoietin and insulin-like growth factor-1 correct the anemia of chronic renal failure in the mouse. Kidney Int. 1996;50:937–43

    Article  PubMed  CAS  Google Scholar 

  351. Miyagawa SH, Kobayashi M, Konishi N, Sato T, Ueda K. Insulin and insulin-like growth factor I support the proliferation of erythroid progenitor cells in bone marrow through the sharing of receptors. Br J Haematol. 2000;109:555–62

    Article  PubMed  CAS  Google Scholar 

  352. Deicher R, Hörl WH. Hormonal adjuvants for the treatment of renal anemia. Eur J Clin Invest. 2004 (In press)

    Google Scholar 

  353. Teruel J, Marcen R, Navarro J et al. Evolution of serum erythropoietin after androgen administration to hemodialysis patients. A prospective study. Nephron. 1995;70: 282–6

    Article  PubMed  CAS  Google Scholar 

  354. Neff M, Goldberg J, Slifkin R et al. A comparison of androgens for anemia in patients on hemodialysis. N Engl J Med. 1981;304:871–5

    Article  PubMed  CAS  Google Scholar 

  355. Parker PA, Izard MW, Maher JF. Therapy of iron deficiency in patients on maintenance dialysis. Nephron. 1979;23: 181–6

    Article  PubMed  CAS  Google Scholar 

  356. Solomon LR, Hendler ED. Prospective controlled study of androgen therapy in the anemia of chronic renal disease: effects on iron kinetics. Acta Haematol. 1988;79:12–19

    Article  PubMed  CAS  Google Scholar 

  357. Navarro JF, Mora C, Macia M, Garcia J. Randomized prospective comparison between erythropoietin and androgens in CAPD patients. Kidney Int. 2002;61:1537–44

    Article  PubMed  CAS  Google Scholar 

  358. Hagenfeldt Y, Linde K, Sjoberg HE, Zumkeller W, Arver S. Testosterone increases serum 1,25-dihydroxyvitamin D and insulin-like growth factor-I (IGF-1) in hypogonadal men. Int J Androl. 1992;15:93–102

    Article  PubMed  CAS  Google Scholar 

  359. Hobbs CJ, Plymate SR, Rosen CJ, Adler RA. Testosterone administration increases insulin-like-growth factor-I levels in normal men. J Clin Endocrinol Metab. 1993;77:776–9

    Article  PubMed  CAS  Google Scholar 

  360. Ballal SH, Domoto DT, Polack DC, Mardciulonis P, Martin KJ. Androgens potentiate the effects of erythropoietin in the treatment of anemia of end-stage renal disease. Am J Kidney Dis. 1991;17:29–33

    PubMed  CAS  Google Scholar 

  361. Gaughan WJ, Liss KA, Dunn SR et al. A 6-month study of low-dose recombinant human erythropoietin alone and in combination with androgens for the treatment of anemia in chronic hemodialysis patients. Am J Kidney Dis. 1997;30:495–500

    Article  PubMed  CAS  Google Scholar 

  362. Berns JS, Rudnick MR, Cohen RM. A controlled trial of recombinant human erythropoietin and nandrolone decanoate in the treatment of anemia in patients on chronic hemodialysis. Clin Nephrol. 1992;37:264–7

    PubMed  CAS  Google Scholar 

  363. Teruel JL, Marcen R, Navarro-Antolin J, Aguilera A, Fernandez-Juarez G, Ortuno J. Androgen versus erythropoietin for the treatment of anemia in hemodialyzed patients: a prospective study. J Am Soc Nephrol. 1996;7:140–4

    PubMed  CAS  Google Scholar 

  364. Teruel J, Marcen R, Navarro J et al. Evolution of serum erythropoietin after androgen administration to hemodialysis patients. A prospective study. Nephron. 1995;70: 282–6

    Article  PubMed  CAS  Google Scholar 

  365. Johansen KL, Mulligan K, Schambelan M. Anabolic effects of nandrolone decanoate in patients receiving dialysis. J Am Med Assoc. 1998;281:1275–81

    Article  Google Scholar 

  366. Johansen KL. The role of nandrolone decanoate in patients with end stage renal disease in the erythropoietin era. Int J Artif Organs. 2001;24:183–5

    PubMed  CAS  Google Scholar 

  367. Teruel JL, Lasuncion MA, Rivera M et al. Nandrolone decanoate reduces serum lipoprotein(a) concentration in hemodialysis patients. Am J Kidney Dis. 1997;29:569–75

    Article  PubMed  CAS  Google Scholar 

  368. Hsu CY, Bates DW, Kuperman GJ, Curhan GG. Relationship between hematocrit and renal function in men and women. Kidney Int. 2001;59:725–31

    Article  PubMed  CAS  Google Scholar 

  369. Jungers P-Y, Robino C, Choukroun G, Nguyen-Khoa N, Massy ZA, Jungers P. Incidence of anaemia, and use of epoetin therapy in pre-dialysis patients: a prospective study in 403 patients. Nephrol Dial Transplant. 2002;17:1621–7

    Article  PubMed  CAS  Google Scholar 

  370. Duncan JA, Levin A. Sex, hemoglobin and kidney disease: new perspectives. Eur J Clin Invest. 2004 (In press)

    Google Scholar 

  371. European best practice guidelines for the management of anaemia in patients with chronic renal failure. Working Party for European Best Practice Guidelines for the Management of Anaemia in Patients with Chronic Renal Failure. Nephrol Dial Transplant. 1999;14(Suppl. 5):1–50

    Google Scholar 

  372. Hörl WH. Is there a role for adjuvant therapy in patients being treated with epoetin? Nephrol Dial Transplant. 1999;14(Suppl. 2):S50–60

    Article  PubMed  Google Scholar 

  373. Gastaldello K, Vereerstraeten A, Nzame-Nze T, Vanherweghem JL, Tielemans C. Resistance to erythropoietin in ironoverloaded haemodialysis patients can be overcome by ascorbic acid administration. Nephrol Dial Transplant. 1995;10(Suppl. 6):44–7

    Article  PubMed  Google Scholar 

  374. Tarng DC, Huang TP. A parallel, comparative study of intravenous iron versus intravenous ascorbic acid for erythropoietin-hyporesponsive anaemia in haemodialysis patients with iron overload. Nephrol Dial Transplant. 1998;13:2867–72

    Article  PubMed  CAS  Google Scholar 

  375. Tarng DC, Wei YH, Huang TP, Kuo BI, Yang WC. Intravenous ascorbic acid as an adjuvant therapy for recombinant erythropoietin in hemodialysis patients with hyperferritinemia. Kidney Int. 1999;55:2477–86

    Article  PubMed  CAS  Google Scholar 

  376. Giancaspro V, Nuzziello M, Pallotta G, Sacchetti A, Petrarulo F. Intravenous ascorbic acid in hemodialysis patients with functional iron deficiency: a clinical trial. J Nephrol. 2000;13:444–9

    PubMed  CAS  Google Scholar 

  377. Sezer S, Ozdemir FN, Yakupoglu U, Arat Z, Turan M, Haberal M. Intravenous ascorbic acid administration for erythropoietin-hyporesponsive anemia in iron loaded hemodialysis patients. Artif Organs. 2002;26:366–70

    Article  PubMed  CAS  Google Scholar 

  378. Keven K, Kutlay S, Nergizoglu G, Ertrürk S. Randomized, crossover study of the effect of vitamin C on EPO response in hemodialysis patients. Am J Kidney Dis. 2003;41:1233–9

    Article  PubMed  CAS  Google Scholar 

  379. Deicher R, Ziai F, Habicht A, Bieglmayer C, Schillinger M, Hörl WH. Vitamin C level and response to erythropoietin in patients on chronic hemodialysis. Nephrol Dial Transplant. 2004 (In press)

    Google Scholar 

  380. Trovato GM, Ginardi V, Di Marco V, Dell ’Aira AE, Corsi M. Long term L-carnitine treatment of chronic anaemia of patients with end-stage renal failure. Curr Ther Res. 1982;31:1042–9

    Google Scholar 

  381. Fagher B, Cederblad G, Monti M, Olsson L, Rasmussen B, Thysell H. Carnitine and left ventricular function in haemodialysis patients. Scand J Clin Lab Invest. 1985;45: 193–8

    Article  PubMed  CAS  Google Scholar 

  382. Nilsson-Ehle P, Cederblad G, Fagher B, Monti M, Thysell H. Plasma lipoproteins, liver function and glucose metabolism in haemodialysis patients: lack of effect of L-carnitine supplementation. Scand J Clin Lab Invest. 1985;45:179–84

    Article  PubMed  CAS  Google Scholar 

  383. Fagher B, Cederblad G, Eriksson M et al. L-Carnitine and haemodialysis: double blind study on muscle function and metabolism and peripheral nerve function. Scand J Clin Lab Invest. 1985;45:169–78

    Article  PubMed  CAS  Google Scholar 

  384. Bellinghieri G, Savica V, Barbera CM et al. L-Carnitine and platelet aggregation in uremic patients subjected to hemodialysis. Nephron. 1990;55:28–30

    Article  PubMed  CAS  Google Scholar 

  385. Hurot J-M, Cucherat M, Haugh M, Fouque D. Effects of L-carnitine supplementation in maintenance hemodialysis patients: a systematic review. J Am Soc Nephrol. 2002;13: 708–14

    PubMed  CAS  Google Scholar 

  386. Labonia WD. L-Carnitine effects on anemia in hemodialyzed patients treated with erythropoietin. Am J Kidney Dis. 1995;26:757–64

    Article  PubMed  CAS  Google Scholar 

  387. Patrikarea A, Stamatelow K, Ntaountaki I, Papadakis IT. The effect of combined L-carnitine and erythropoietin administration on the anaemia and on the lipid profile of patients on hemodialysis. Nephrol Dial Transplant. 1996;11:A262

    Google Scholar 

  388. Megri K, Trombert JC, Zannier A. Effet de la L-carnitine chez les patients en hemodialysis chronique traitée par érythropoietine recombinante. Nephrologie. 1998;19:171 (abstract).

    Google Scholar 

  389. Caruso U, Leone L, Cravotto E, Nava D. Effects of L-carnitine on anemia in aged hemodialysis patients treated with recombinant human erythropoietin: a pilot study. Dial Transplant. 1998;27:498–506

    Google Scholar 

  390. Sloan RS, Kastan B, Rice SI et al. Quality of life during and between hemodialysis treatments: role of L-carnitine supplementation. Am J Kidney Dis. 1998;32:265–72

    Article  PubMed  CAS  Google Scholar 

  391. Kletzmayr J, Mayer G, Legenstein H et al. Anemia and carnitine supplementation in hemodialyzed patients. Kidney Int. 1999;69(Suppl.):93–106

    Article  Google Scholar 

  392. Yoshida A, Morozumi K, Suganuma T et al. Angiotensinconverting enzyme inhibitor and anemia in a patient undergoing hemodialysis. Nephron. 1991;59:334–5 (letter)

    Article  PubMed  CAS  Google Scholar 

  393. Ertürk S, Ates K, Duman N, Karatan O, Erbay B, Ertug E. Unresponsiveness to recombinant human erythropoietin in haemodialysis patients: possible implications of angiotensinconverting enzyme inhibitors. Nephrol Dial Transplant. 1996;11:396–7 (letter)

    Article  PubMed  Google Scholar 

  394. Akpolat T, Gumus T, Bedir A, Adam B. Acute effect of trandolapril on serum erythropoietin in uremic and hypertensive patients. J Nephrol. 1998;11:94–7

    PubMed  CAS  Google Scholar 

  395. Schiffl H, Lang SM. Angiotensin-converting enzyme inhibitors but not angiotensin II AT 1 receptor antagonists affect erythropoiesis in patients with anemia of end-stage renal disease. Nephron. 1999;81:106–8 (letter)

    Article  PubMed  CAS  Google Scholar 

  396. Hirakata H, Onoyama K, Iseki K, Kumagai H, Fujimi S, Omae T. Worsening of anemia induced by long-term use of captopril in hemodialysis patients. Am J Nephrol. 1984; 4:355–60

    Article  PubMed  CAS  Google Scholar 

  397. Hirakata H, Onoyama K, Hori K, Fujishima M. Participation of the renin-angiotensin system in the captopril-induced worsening of anemia in chronic hemodialysis patients. Clin Nephrol. 1986;26:27–32

    PubMed  CAS  Google Scholar 

  398. Walter J. Does captopril decrease the effect of human recombinant erythropoietin in haemodialysis patients? Nephrol Dial Transplant. 1993;8:1428 (letter)

    PubMed  CAS  Google Scholar 

  399. Dhont AW, Vanholder RC, Ringoir SMG. Angiotensinconverting enzyme inhibitors and higher erythropoietin requirement in chronic haemodialysis patients. Nephrol Dial Transplant. 1995;10:2107–9

    Google Scholar 

  400. Matsumura M, Nomura H, Koni I, Mabuchi H. Angiotensin-converting enzyme inhibitors are associated with the need for increased recombinant human erythropoietin maintenance doses in hemodialysis patients. Nephron. 1997; 77:164–8

    Article  PubMed  CAS  Google Scholar 

  401. Hess E, Sperschneider H, Stein G. Do ACE inhibitors influence the dose of human recombinant erythropoietin in dialysis patients? Nephrol Dial Transplant. 1996;11: 749–51

    Article  PubMed  CAS  Google Scholar 

  402. Ertürk S, Nergizoglu G, Ates K, Duman N, Erbay B, Karatan O, Ertug AE. The impact of withdrawing ACE inhibitors on erythropoietin responsiveness and left ventricular hypertrophy in haemodialysis patients. Nephrol Dial Transplant. 1999;14:1912–16

    Article  PubMed  Google Scholar 

  403. Albitar S, Genin R, Fen-Chong M, Serveaux M-O, Bourgenon B. High dose enalapril impairs the response to erythropoietin treatment in haemodialysis patients. Nephrol Dial Transplant. 1998;13:1206–10

    Article  PubMed  CAS  Google Scholar 

  404. Abu-Alfa AK, Cruz D, Perazella MA, Mahnensmith RL, Simon D, Bia MJ. ACE inhibitors do not induce recombinant human erythropoietin resistance in hemodialysis patients. Am J Kidney Dis. 2000;35:1076–82

    Article  PubMed  CAS  Google Scholar 

  405. Conlon PJ, Albers F, Butterly D, Schwab SJ. ACE inhibitors do not affect erythropoietin efficacy in haemodialysis patients. Nephrol Dial Transplant. 1994;9:1358 (letter)

    PubMed  CAS  Google Scholar 

  406. Cruz DN, Perazella MA, Abu-Alfa AK, Mahnensmith RL. Angiotensin-converting enzyme inhibitor therapy in chronic hemodialysis patients: any evidence of erythropoietin resistance? Am J Kidney Dis. 1996;28:535–40.

    Article  PubMed  CAS  Google Scholar 

  407. Charytan C, Goldfarb-Rumyantzev A, Wang YF, Schwenk MH, Spinowitz BS. Effect of angiotensin-converting enzyme inhibitors on response to erythropoietin therapy in chronic dialysis patients. Am J Nephrol. 1998;18:498–503

    Article  PubMed  CAS  Google Scholar 

  408. Le Meur Y, Lorgeot V, Comte L et al. Plasma levels and metabolism of AcSDKP in patients with chronic renal failure: relationship with erythropoietin requirements. Am J Kidney Dis. 2001;38:510–17

    Article  PubMed  Google Scholar 

  409. Chew CG, Weise MD, Disney APS. The effect of angiotensin II receptor antagonist on the exogenous erythropoietin requirement of haemodialysis patients. Nephrol Dial Transplant. 1999;14:2047 (letter)

    Article  PubMed  CAS  Google Scholar 

  410. Schwarzbeck A, Wittenmeier KW, Hällfritzsch U. Anaemia in dialysis patients as a side-effect of sartanes. Lancet. 1998;352:286 (letter)

    Article  PubMed  CAS  Google Scholar 

  411. Naito M, Kawashima A, Akiba T, Takanashi M. Effects of an angiotensin II receptor antagonist and angiotensinconverting enzyme inhibitors on burst forming units-erythroid in chronic hemodialysis patients. Am J Nephrol. 2003; 23:287–93

    Article  PubMed  CAS  Google Scholar 

  412. Kato A, Takita T, Furuhashi M et al. No effect of losartan on response to erythropoietin therapy in patients undergoing hemodialysis. Nephron. 2000;86:538–9 (letter)

    Article  PubMed  CAS  Google Scholar 

  413. Odabas AR, Cetinkaya R, Selcuk Y et al. The effect of high dose losartan on erythropoietin resistance in patients undergoing haemodialysis. Panminerva Med. 2003;45:59–62

    PubMed  CAS  Google Scholar 

  414. Macdougall IC. The role of ACE inhibitors and angiotensin II receptor blockers in the response to epoetin. Nephrol Dial Transplant. 1999;14:1836–41

    Article  PubMed  CAS  Google Scholar 

  415. Miles AM, Markell MS, Daskalakis P et al. Anemia following renal transplantation: erythropoietin response and iron deficiency. Clin Transplant. 1997;11:313–15

    PubMed  CAS  Google Scholar 

  416. Vanrenterghem Y, Ponticelli C, Morales JM et al. Prevalence and management of anemia in renal transplant recipients: a European survey. Am J Transplant. 2003;3:835–45

    Article  PubMed  Google Scholar 

  417. Kewalramani R, Winkelmayer WC, Rutstein M et al. Anemia in renal transplant recipients: an emerging concern. American Transplant Congress. 2003

    Google Scholar 

  418. Mix TCH, Kazmi W, Khan S et al. Anemia: a continuing problem following kidney transplantation. Am J Transplant. 2003;3:1426–33

    Article  PubMed  Google Scholar 

  419. Gill JS, Abichandani R, Khan S, Kausz AT, Pereira BJG. Opportunities to improve the care of patients with kidney transplant failure. Kidney Int. 2002;61:2193–200

    Article  PubMed  Google Scholar 

  420. Qunibi WY, Barri Y, Devol E, Al-Furayh O, Sheth K, Taher S. Factors predictive of post-transplant erythrocytosis. Kidney Int. 1991;40:1153–9

    Article  PubMed  CAS  Google Scholar 

  421. Almond MK, Tailor D, Kelsey SM, Cunningham J. Treatment of erythropoietin resistance with cyclosporin. Lancet. 1994;343:916–17

    Article  PubMed  CAS  Google Scholar 

  422. Almond MK, Tailor D. Marsh FP, Raftery MJ, Cunningham J. Increased erythropoietin requirements in patients with failed renal transplants returning to a dialysis programme. Nephrol Dial Transplant. 1994;9:270–3

    PubMed  CAS  Google Scholar 

  423. Page B, Zingraff J. Resistance to rHuEPO and kidney graft rejection. Nephrol Dial Transplant. 1994;9:1696

    PubMed  CAS  Google Scholar 

  424. Sumrani NB, Daskalakis P, Miles AM et al. Erythrocytosis after renal transplantation. A prospective analysis. ASAIO J. 1993;39:51–5

    PubMed  CAS  Google Scholar 

  425. Nankivell BJ, Allen RDM, O’Connell PJ, Chapman JP. Erythrocytosis after renal transplantation: risk factors and relationship with GFR. Clin Transplant. 1995;9:375–82

    PubMed  CAS  Google Scholar 

  426. Besarab A, Caro J, Jarrell BE, Francos G, Erslev AJ. Dynamics of erythropoiesis following renal transplantation. Kidney Int. 1987;32:526–36

    Article  PubMed  CAS  Google Scholar 

  427. Sun CH, Ward HJ, Paul WL, Koyle MA, Yanagawa N, Lee DB. Serum erythropoietin levels after renal transplantation. N Engl J Med. 1989;321:151–7.

    Article  PubMed  CAS  Google Scholar 

  428. Chua M-S, Barry C, Chen X, Salvatierra O, Sarwal MM. Molecular profiling of anemia in acute renal allograft rejection using DANN microarrays. Am J Transplat. 2003; 3:17–22

    Article  CAS  Google Scholar 

  429. European MMF Cooperative Study Group. Mycophenolate mofetil in renal transplantation: 3-years results from the placebo-controlled trial. Transplantation. 1999;68:391–6

    Article  Google Scholar 

  430. DeClerck YA, Ettenger RB, Ortega JA, Pennisi AJ. Macrocytosis and pure RBC anemia caused by azathioprine. Am J Dis Child. 1980;134:377–9

    PubMed  CAS  Google Scholar 

  431. Creemers GJ, van Boven WPL, Lowenberg B, van der Heul C. Azathioprine-associated pure red cell aplasia. J Intern Med. 1993;233:85–7

    Article  PubMed  CAS  Google Scholar 

  432. Gossmann J, Kachel HG, Schoeppe W, Scheuermann EH. Anemia in renal transplant recipients caused by concomitant therapy with azathioprine and angiotensin-converting enzyme inhibitors. Transplantation. 1993;56:585–9

    Article  PubMed  CAS  Google Scholar 

  433. Morii M, Ueno K, Ogawa A et al. Impairment of mycophenolate mofetil absorption by iron ion. Clin Pharmacol Ther. 2000;68:613–16

    Article  PubMed  CAS  Google Scholar 

  434. Lorenz M, Woltzt M, Weigel G et al. Ferrous sulfate does not affect steady-state mycophenolate mofetil pharmacokinetics in kidney transplant recipients. Am J Kidney Dis. 2004;43:1098–103

    Article  PubMed  CAS  Google Scholar 

  435. Rigatto C, Parfrey P. Strategies to improve outcomes after renal transplantation. N Engl J Med. 2002;346:2089–92; author reply, 20–92

    Article  PubMed  Google Scholar 

  436. Rigatto C, Parfrey P, Foley R, Negrijn C, Tribula C, Jeffery J. Congestive heart failure in renal transplant recipients: risk factors, outcomes, and relationship with ischemic heart disease. J Am Soc Nephrol. 2002;13:1084–90

    PubMed  Google Scholar 

  437. Bostom AD, Brown RS, Chavers BM et al. Prevention of post-transplant cardiovascular disease — report and recommendations of an ad hoc group. Am J Transplant. 2002; 2:491–500

    Article  PubMed  Google Scholar 

  438. Rigatto C, Foley R, Jeffery J, Negrijn C, Tribula C, Parfrey P. Electrocardiographic left ventricular hypertrophy in renal transplant recipients: prognostic value and impact of blood pressure and anemia. J Am Soc Nephrol. 2003;14: 462–8

    Article  PubMed  Google Scholar 

  439. Casadevall N, Nataf J, Viron B et al. Pure red-cell aplasia and anti-erythropoietin antibodies in patients treated with recombinant erythropoietin. N Engl J Med. 2002;346:469–75

    Article  PubMed  CAS  Google Scholar 

  440. Gershon SK, Luksenburg H, Cote TR, Braun MM. Pure red-cell aplasia and recombinant erythropoietin. N Engl J Med. 2002;346:1584–5 (letter)

    Article  PubMed  Google Scholar 

  441. Pollock, C, Rossert J, Schellekens H. Pure red cell aplasia: highlights from the 2003 World Congress of Nephrology. Nexus Communications, 2003:4–10

    Google Scholar 

  442. Eckardt KU, Casadevall N. Pure red-cell aplasia due to anti-erythropoietin antibodies. Nephrol Dial Transplant. 2003;18:865–9

    Article  PubMed  Google Scholar 

  443. Weber G, Gross J, Kromminga A, Loew HH, Eckardt KU. Allergic skin and systemic reactions in a patient with pure red cell aplasia epoetins. J Am Soc Nephrol. 2002;13: 2381–3

    Article  PubMed  Google Scholar 

  444. Chng WJ, Tan LK, Liu TC. Cyclosporine treatment for patients with CRF who developed pure red cell aplasia following EPO therapy. Am J Kidney Dis. 2003;41: 692–5

    Article  PubMed  Google Scholar 

  445. Panchapakesan U, Austin SK, Shafransky A, Lawrence JA, Savdie E. Recovery of pure red-cell aplasia secondary to antierythropoietin antibodies after cessation of recombinant human erythropoietin. Intern Med J. 2003;33:468–71

    Article  PubMed  CAS  Google Scholar 

  446. Locatelli F, Aljama P, Barany P et al. Erythropoiesis stimulating agents and antibody-mediated pure red cell aplasia: where are we now and where do we go from here? Nephrol Dial Transplant. 2004;19:288–93.

    Article  PubMed  CAS  Google Scholar 

  447. Pure Red Cell Aplasia Global Scientific Advisory Board (GSAB). Erythropoietin-induced, antibody-mediated pure red cell aplasia. Eur J Clin Invest. 2004 (In press).

    Google Scholar 

  448. Swanson SJ, Ferbas J, Mayeux P, Casadevall N. Evaluation of methods to detect and characterize antibodies against recombinant human erythropoietin. Nephron. 2004 (In press).

    Google Scholar 

  449. Bunn HF. Drug-induced autoimmune red-cell aplasia. N Engl J Med. 2002;346:522–3.

    Article  PubMed  Google Scholar 

  450. Skibeli V, Nissen-Lie G, Torjesen P. Sugar profiling proves that human serum erythropoietin differs from recombinant human erythropoietin. Blood. 2001;98:3626–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hörl, W.H. (2004). Management of anemia in patients with chronic kidney disease. In: Hörl, W.H., Koch, K.M., Lindsay, R.M., Ronco, C., Winchester, J.F. (eds) Replacement of Renal Function by Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2275-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2275-3_39

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7012-1

  • Online ISBN: 978-1-4020-2275-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics