Skip to main content

The uremic syndrome and pathophysiology of chronic renal failure

  • Chapter
  • 580 Accesses

Abstract

Excess mortality has been described in end-stage renal disease (ESRD) patients, particularly in young dialysis patients as compared to the general population (1) (Figure 1). Atherosclerosis is a major risk factor in patients with chronic kidney diseases. The high prevalence of coronary heart disease and cardiac death in uremia is related to the accelerated atherosclerosis in these patients (2). A very rapid appearance of advanced coronary lesions was found in young adults with childhood-onset chronic renal failure (3). Atherosclerosis occurs very early in kidney diseases; it is more common and more severe in uremic patients than in the general population. Atherosclerotic plaques grow faster in a uremic environment (4). Advanced atherosclerosis is also seen in pre-dialysis patients with chronic renal failure (5). The presence of vasculopathy has been reported in one-third of patients with chronic kidney disease, even in the early stage of the disease (6).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foley RN, Parfrey PS, Sarnak MJ. Clinical epidemiology and cardiovascular disease in chronic renal disease. Am J Kidney Dis. 1998;32(Suppl.):S112–19.

    Article  PubMed  CAS  Google Scholar 

  2. Lindner A, Charra B, Sherrard DJ, Scribner BH. Accelerated atherosclerosis in prolonged maintenance hemodialysis. N Engl J Med. 1974;290:697–701.

    Article  PubMed  CAS  Google Scholar 

  3. Oh J, Wunsch R, Turzer M et al. Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation. 2002;106:100–5.

    Article  PubMed  Google Scholar 

  4. Amann K, Ritz C, Adamczak M, Ritz E. Why is coronary heart disease of uraemic patients so frequent and so devasting? Nephrol Dial Transplant. 2003;18:631–40.

    Article  PubMed  Google Scholar 

  5. Shoji T, Emoto M, Tabata T et al. Advanced atherosclerosis in predialysis patients with chronic renal failure. Kidney Int. 2002;61:2187–92.

    Article  PubMed  Google Scholar 

  6. Landray MJ, Thambyrajah J, McGlynn FJ et al. Epidemiological evaluation of known and suspected cardiovascular risk factors in chronic renal impairment. Am J Kidney Dis. 2001;38:537–46.

    Article  PubMed  CAS  Google Scholar 

  7. London GM, Guérin AP, Marchais SJ et al. Cardiac and arterial interactions in end-stage renal disease. Kidney Int. 1996;50:600–8.

    Article  PubMed  CAS  Google Scholar 

  8. Blacher J, Guérin AP, Pannier B et al. Impact of aortic stiffness on survival in end-stage renal disease. Circulation. 1999;99:2434–9.

    Article  PubMed  CAS  Google Scholar 

  9. Guérin AP, London GM, Marchais SJ et al. Arterial stiffening and vascular calcifications in end-stage renal disease. Nephrol Dial Transplant. 2000;15:1014–21.

    Article  PubMed  Google Scholar 

  10. Cheung AK, Sarnak MJ, Yan G et al. Atherosclerotic cardiovascular disease in chronic hemodialysis patients. Kidney Int. 2000;58:353–62.

    Article  PubMed  CAS  Google Scholar 

  11. Ross R. Atheroclerosis: an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  PubMed  CAS  Google Scholar 

  12. Arici M, Walls J. End-stage renal disease, atherosclerosis, and cardiovascular mortality: Is C-reactive protein the missing link? Kidney Int. 2001;59:407–14.

    Article  PubMed  CAS  Google Scholar 

  13. Sethi D, Muller BR, Brown EA et al. C-reactive protein in haemodialysis patients with dialysis arthropathy. Nephrol Dial Transplant. 1988;3:269–71.

    PubMed  CAS  Google Scholar 

  14. Haubitz M, Schulze M, Koch KM. Increase of C-reactive protein serum values following haemodialysis. Nephrol Dial Transplant. 1990;5:500–3.

    Article  PubMed  CAS  Google Scholar 

  15. Haubitz M, Brunkhorst R, Wrenger E et al. Chronic induction of C-reactive protein by hemodialysis, but not by peritoneal dialysis therapy. Pert Dial Int. 1996;16:158–62.

    CAS  Google Scholar 

  16. Herbelin A, Urena P, Nguyen AT et al. Elevated circulating levels of interleukin-6 in patients with chronic renal failure. Kidney Int. 1991;39:954–60.

    Article  PubMed  CAS  Google Scholar 

  17. Cavaillon J-M, Poignet J-L, Fitting C et al. Serum interleukin-6 in long-term hemodialyzed patients. Nephron. 1992;60:307–13.

    Article  PubMed  CAS  Google Scholar 

  18. Pereira BJG, Shapiro L, King AJ et al. Plasma levels of IL1β3, TNFcα and their specific inhibitors in undialyzed chronic renal failure, CAPD and hemodialysis patients. Kidney Int. 1994; 45:890–6.

    Article  PubMed  CAS  Google Scholar 

  19. Stenvinkel P, Heimburger O, Paultre F et al. Strong association between malnutrition, inflammation and atherosclerosis in chronic renal failure, Kidney Int. 1999;55:1899–911.

    Article  PubMed  CAS  Google Scholar 

  20. Schouten WEM, Grooteman MPC, Van Houte A-J et al. Effects of dialyser and dialysate on the acute phase reaction in clinical bicarbonate dialysis. Nephrol Dial Transplant. 2000;15:379–84.

    Article  PubMed  CAS  Google Scholar 

  21. Panichi V, Migliori M, DE Pietro S et al. Plasma C-reactive protein in hemodialysis patients: a cross-sectional, longitudinal clinical survey. Blood Purif. 2000;18:30–6.

    Article  PubMed  CAS  Google Scholar 

  22. Zimmermann J, Herrlinger S, Pruy A, Metzger T, Wanner C. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int. 1999;55:648–58.

    Article  PubMed  CAS  Google Scholar 

  23. Guijarro C, Egido J. Transcription factor-KB (NF-KB) and renal disease. Kidney Int. 2001;59:415–24.

    Article  PubMed  CAS  Google Scholar 

  24. Barnes PJ, Karin M. Nuclear factor-KB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med. 1997;336:1066–71.

    Article  PubMed  CAS  Google Scholar 

  25. Witko-Sarsat V, Friedlander M, Capeillère-Blandin C et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 1996;49:1304–13.

    Article  PubMed  CAS  Google Scholar 

  26. Hasselwander O, Young IS. Oxidative stress in chronic renal failure. Free Radic Res. 1998;29:1–11.

    Article  PubMed  CAS  Google Scholar 

  27. Galli F, Canestrai F, Bellomo G. Physiopathology of the oxidative stress and its implications in uremia and dialysis. Contrib Nephrol. 1999;127:1–31.

    Article  PubMed  CAS  Google Scholar 

  28. Mimic-Oka J, Simic T, Djukanovic I, Davicevic Z. Alteration in plasma antioxidant capacity in various degrees of chronic renal failure. Clin Nephrol. 1999;51:233–41.

    PubMed  CAS  Google Scholar 

  29. Lim PS, Wang NP, Lu TC et al. Evidence for alterations in circulating low-molecular-weight antioxidants and increased lipid peroxidation in smokers on hemodialysis. Nephron. 2001;88:127–33.

    Article  PubMed  CAS  Google Scholar 

  30. Morena M, Cristol JP, Bosc JY et al. Convective and diffuse losses of vitamin C during haemodiafiltration session: a contributive factor to oxidative stress in haemodialysis patients. Nephrol Dial Transplant. 2002;17:422–7.

    Article  PubMed  CAS  Google Scholar 

  31. Hasdan G, Benchetrit S, Rashid G et al. Endothelial dysfunction and hypertension in 5/6 nephrectomized rats are mediated by vascular superoxide. Kidney Int. 2002;61: 586–90.

    Article  PubMed  CAS  Google Scholar 

  32. Vaziri ND, Oveisi F, Ding Y. Role of increased oxygen free radical activity in the pathogenesis of uremic hypertension. Kidney Int. 1998;53:1748–54.

    Article  PubMed  CAS  Google Scholar 

  33. Miyata T, Van Ypersele C, Kurokawa K, Baynes JW. Alterations in nonenzymatic biochemistry in uremia: origin and significance of ‘carbonyl stress’ in long-term uremic complications. Kidney Int. 1999;55:389–99.

    Article  PubMed  CAS  Google Scholar 

  34. Raj DSC, Choudhury D, Welbourne C, Levi M. Advanced glycation end products: a nephrologist’s perspective. Am J Kidney Dis. 2000;35:365–80.

    Article  PubMed  CAS  Google Scholar 

  35. Witko-Sarsat V, Friedlander M, Nguyen-Khoa T et al. Advanced oxidation protein products as native mediators of inflammation and monocyte activation in chronic renal failure. J Immunol. 1998;161:2524–32.

    PubMed  CAS  Google Scholar 

  36. Park L, Raman KG, Lee KJ et al. Suppression of accelerated diabetic atherosclerosis by the soluble receptor of advanced glycation end-products. Nat Med. 1998;9:1025–31.

    Article  CAS  Google Scholar 

  37. Schinzel R, Münch G, Heidland A, Sebekova K. Advanced glycation end products in end-stage renal disease and their removal. Nephron. 2001;87:295–303.

    Article  PubMed  CAS  Google Scholar 

  38. Himmelfarb J, McMonagle E. Albumin is the major plasma protein target of oxidant stress in uremia. Kidney Int. 2001; 60:358–63.

    Article  PubMed  CAS  Google Scholar 

  39. Maier K, Hinze H, Holzer H. Inactivation of enzymes and an enzyme inhibitor by oxidative modification with chlorinated amines and metal-catalyzed oxidation systems. Biochim Biophys Acta. 1991;1079:238–41.

    Article  PubMed  CAS  Google Scholar 

  40. Margiloff L, Chaplia L, Chow A, Singhal PC, Mattana J. Metal-catalyzed oxidation of immunoglobulin G impairs Fc receptor-mediated binding to macrophages. Free Radic Biol Med. 1998;25:780–85.

    Article  PubMed  CAS  Google Scholar 

  41. Dalle-Donne I, Rossi R, Giustarini D et al. Actin carbonylation: from a simple marker of protein oxidation to relevant signs of severe functional impairment. Free Radic Biol Med. 2001;31:1075–83.

    Article  PubMed  CAS  Google Scholar 

  42. Shacter E, Williams JA, Levine RL. Oxidative modification of fibrinogen inhibits thrombin-catalyzed clot formation. Free Radic Biol Med. 1995;18:815–21.

    Article  PubMed  CAS  Google Scholar 

  43. Miyata T, Kurokawa K, Van Ypersele DE, Strihou TC. Advanced glycation and lipoxidation end products: role of carbonyl compound generated during carbohydrate and lipid metabolism. J Am Soc Nephrol. 2000;11:1744–52.

    PubMed  CAS  Google Scholar 

  44. Miyata T, Inagi R, Asahi K et al. Generation of protein carbonyls by glucoxidation and lipoxidation reactions with autoxidant products of ascorbic acid and polyunsaturated fatty acid. FEBS Lett. 1998;437:24–8.

    Article  PubMed  CAS  Google Scholar 

  45. Meng J, Sakata N, Imanaga Y et al. Evidence for a link between glycoxidation and lipoperoxidation in patients with chronic renal failure. Clin Nephrol. 1999;51:280–9.

    PubMed  CAS  Google Scholar 

  46. Niwa T, Tsukushi S. 3-Desoxyglucosone and AGEs in uremic complications: inactivation of glutathione peroxidase by 3-deoxyglucosone. Kidney Int. 2001;59(Suppl. 78):S37–41.

    Article  Google Scholar 

  47. Miyata T, Ueda Y, Izuhara Y et al. Accumulation of carbonyls accelerates the formation of pentosidine, an advanced glycation end product: carbonyl stress in uremia. J Am Soc Nephrol. 1998;9:2349–56.

    PubMed  CAS  Google Scholar 

  48. Weiss MF, Erhard P, Kader-Attia FA et al. Mechanisms for the formation of glycoxidation products in end-stage renal disease. Kidney Int. 2001;57:2571–85.

    Article  Google Scholar 

  49. Himmelfarb J, McMonagle E, McMenamin E. Plasma protein thiol oxidation and carbonyl formation in chronic renal failure. Kidney Int. 2000;58:2571–8.

    Article  PubMed  CAS  Google Scholar 

  50. Himmelfarb J, McMonagle E. Manifestations of oxidant stress in uremia. Blood Purif. 2001;19:200–5.

    Article  PubMed  CAS  Google Scholar 

  51. Uchida K. Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med. 2000;28:1685–96.

    Article  PubMed  CAS  Google Scholar 

  52. Sakata N, Imanaga Y, Meng J et al. Increased advanced glycation end products in atherosclerotic lesions of patients with end-stage renal disease. Atherosclerosis. 1999;142:67–77.

    Article  PubMed  CAS  Google Scholar 

  53. Berliner JA, Navab M, Fogelman AM et al. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation. 1995;91:2488–96.

    Article  PubMed  CAS  Google Scholar 

  54. Kato A, Odamaki M, Takita T et al. Association between interleukin-6 and carotid atherosclerosis in hemodialysis patients. Kidney Int. 2002;61:1143–52.

    Article  PubMed  CAS  Google Scholar 

  55. Uchida K, Itakura K, Kawakishi S et al. Characterization of epitopes recognized by 4-hydroxy-2-nonenal specific antibodies. Arch Biochem Biophys. 1995;324:241–8.

    Article  PubMed  CAS  Google Scholar 

  56. Anderson MM, Hazen SL, Hsu FF, Heinecke JW. Human neutrophils employ the myeloperoxidase-hydrogen peroxide chloride system to convert hydroxy-amino acids into glycoaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha, beta-unsaturated aldehydes by phagocytes at sites of inflammation. J Clin Invest. 1997;99:424–32.

    Article  PubMed  CAS  Google Scholar 

  57. Drüeke T, Witko-Sarsat V, Massy Z et al. Iron therapy, advanced oxidation protein products and carotid artery intima-media thickness in end-stage renal disease. Circulation. 2002;106:2212–17.

    Article  PubMed  Google Scholar 

  58. Hazell LJ, Arnold L, Flowers D et al. Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Invest. 1996;97:1535–44.

    Article  PubMed  CAS  Google Scholar 

  59. Witko-Sarsat V, Gausson V, Descamps-Latscha B. Are advanced oxidation protein products potential uremic toxins? Kidney Int. 2003;63(Suppl. 84):S11–14.

    Article  Google Scholar 

  60. Himmelfarb JW, McMenamin E, Loseto G, Heinecke JW. Myeloperoxidase-catalyzed 3-chlorotyrosine formation in dialysis patients. Free Radic Biol Med. 2001;31:1163–9.

    Article  PubMed  CAS  Google Scholar 

  61. Michelis R, Gery R, Sela S et al. Carbonyl stress induced by intravenous iron during haemodialysis. Nephrol Dial Transplant. 2003;18:924–30.

    Article  PubMed  CAS  Google Scholar 

  62. Witko-Sarsat V, Gausson V, Nguyen AT et al. AOPPinduced activation of human neutrophil and monocyte oxidative metabolism: a potential target for N-acetylcysteine treatment in dialysis patients. Kidney Int. 2003(In press).

    Google Scholar 

  63. Kaneda H, Taguchi J, Ogasawara K et al. Increased level of advanced oxidation protein products in patients with coronary heart disease. Atherosclerosis. 2002;162:221–5.

    Article  PubMed  CAS  Google Scholar 

  64. Schwedler SB, Metzger T, Schinzel R, Wanner C. Advanced glycation end products and mortality in hemodialysis patients. Kidney Int. 2002;62:301–10.

    Article  PubMed  CAS  Google Scholar 

  65. Miyata T, Van Ypersele de Strihou C, Ueda Y et al. Angiotensin II receptor antagonists and angiotensinconverting enzyme inhibitors lower in vitro the formation of advanced glycation end products: biochemical mechanisms. J Am Soc Nephrol. 2002;13:2478–87.

    Article  PubMed  CAS  Google Scholar 

  66. Bos JC, Grooteman MPC, Van Houte AJ et al. Low polymorphonuclear cell degranulation during citrate anticoagulation: a comparison between citrate and heparin dialysis. Nephrol Dial Transplant. 1997;12:1387–93.

    Article  PubMed  CAS  Google Scholar 

  67. Himmelfarb J, McMenamin E, McMonagle E. Plasma aminothiol oxidation in chronic hemodialysis patients. Kidney Int. 2002;61:705–16.

    Article  PubMed  CAS  Google Scholar 

  68. Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM. The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62: 1524–38.

    Article  PubMed  CAS  Google Scholar 

  69. Wilcken DE, Gupta VJ. Sulphurcontaining amino acids in chronic renal failure with particular reference to homocystine and cysteine-homocysteine mixed disulphide. Eur J Clin Invest. 1979;9:301–7.

    Article  PubMed  CAS  Google Scholar 

  70. Födinger M, Mannhalter C, Wölfl G et al. Mutation (677 C to T) in the methylenetetrahydrofolate reductase gene aggravates hyperhomocysteinemia in hemodialysis patients. Kidney Int. 1997;52:517–23.

    Article  PubMed  Google Scholar 

  71. Vychytil A, Födinger M, Wölfl G et al. Major determinants of hyperhomocysteinemia in peritoneal dialysis patients. Kidney Int. 1998;53:1775–82.

    Article  PubMed  CAS  Google Scholar 

  72. Arnadottir M, Hultberg B, Nilsson-Ehle P, Thysell H. The effect of reduced glomerular filtration rate on plasma total homocysteine concentration. Scand J Clin Lab Invest. 1996; 56:41–6.

    Article  PubMed  CAS  Google Scholar 

  73. Robinson K, Gupta A, Dennis V et al. Hyperhomocysteinemia confers an independent increased risk of atherosclerosis in end-stage renal disease and is closely linked to plasma folate and pyridoxine concentrations. Circulation. 1996;94:2743–8.

    Article  PubMed  CAS  Google Scholar 

  74. McGregor DO, Dellow WJ, Lever M et al. Dimethylglycine accumulates in uremia and predicts elevated plasma homocysteine concentrations. Kidney Int. 2001;59:2267–72.

    PubMed  CAS  Google Scholar 

  75. Skoupy S, Födinger M, Veitl M et al. Riboflavin is a determinant of total homocysteine plasma concentrations in endstage renal disease patients. J Am Soc Nephrol. 2002; 13:1331–7.

    Article  PubMed  CAS  Google Scholar 

  76. Wilcken DE, Wilcken B. The pathogenesis of coronary artery disease. A possible role for methionine metabolism. J Clin Invest. 1976;57:1079–82.

    Article  PubMed  CAS  Google Scholar 

  77. Clarke R, Daly L, Robinson K et al. Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med. 1991;324:1149–55.

    Article  PubMed  CAS  Google Scholar 

  78. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. J Am Med Assoc. 1995;274:1049–57.

    Article  CAS  Google Scholar 

  79. Danesh J, Lewington S. Plasma homocysteine and coronary heart disease: systematic review of published epidemiological studies. J Cardiovasc Risk. 1998;5:229–32.

    Article  PubMed  CAS  Google Scholar 

  80. Frost P, Blom HJ, Milos R et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet. 1995;10:111–13.

    Article  Google Scholar 

  81. Klerk M, Verhoef P, Clarke R et al. MTHFR C677C > polymorphism and risk of coronary heart disease: metaanalysis of 40 studies. J Am Med Assoc. 2002;288:2023–21.

    Article  CAS  Google Scholar 

  82. Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: meta-analysis. J Am Med Assoc. 2002;288:2015–22.

    Article  Google Scholar 

  83. Ma J, Stampfer MJ, Hennekens CH et al. Methylenetetrahydrofolate reductase polymorphism, plasma folate, homocysteine and risk of myocardial infarction in US physicians. Circulation. 1996;94:2410–16.

    Article  PubMed  CAS  Google Scholar 

  84. Guttormsen AB, Ueland PM, Nesthus I et al. Determinants and vitamin responsiveness of intermediate hyperhomocysteinemia (> 40 µtmo1/1). The Hordaland Homocysteine Study. J Clin Invest. 1996;98:2174–83.

    Article  PubMed  CAS  Google Scholar 

  85. Markus HS, Ali N, Swaminathan R et al. A common polymorphism in the methylenetetrahydrofolate reductase gene, homocysteine, and ischemic cerebrovascular disease. Stroke. 1997;28:1739–43.

    Article  PubMed  CAS  Google Scholar 

  86. Morita H, Taguchi J, Kurihara H et al. Genetic polymorphism of 5,10-methylenetetrahydrofolate reductase (MTHFR) as a risk factor for coronary artery disease. Circulation. 1997;95:2032–6.

    Article  PubMed  CAS  Google Scholar 

  87. Van Bockxmeer FM, Mamotte CDS, Vaikaran SD, Taylor RR. Methylenetetrahydrofolate reductase gene and coronary artery disease. Circulation. 1997;95:21–3.

    Article  PubMed  Google Scholar 

  88. Brattstrom L, Wilcken DEL, Ohrvik J, Brudin L. Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease. The result of a meta-analysis. Circulation. 1998;98:2520–6.

    Article  PubMed  CAS  Google Scholar 

  89. Morita H, Kurihara H, Tsubaki S et al. Methylenetetrahydrofolate reductase gene polymorphism and ischemic stroke in Japanese. Arterioscler Thromb Vasc Biol. 1998;18:1465–9.

    Article  PubMed  CAS  Google Scholar 

  90. Verhoeff BJ, Trip MD, Prins MH et al. The effect of a common methylenetetrahydrofolate reductase mutation on levels of homocysteine, folate, vitamin B12 and on the risk of premature atherosclerosis. Atherosclerosis. 1998;141:161–6.

    Article  PubMed  CAS  Google Scholar 

  91. Harmon DL, Doyle RM, Meleady R et al. Genetic analysis of the thermolabile variant of 5,10-methylenetetrahydrofolate reductase as a risk factor for ischemic stroke. Arterioscler Thromb Vasc Biol. 1999;19:208–11.

    Article  PubMed  CAS  Google Scholar 

  92. Lim P-S, Hung W-R, Wei Y-H. Polymorphism in methylenetetrahydrofolate reductase gene: its impact on plasma homocysteine levels and carotid atherosclerosis in ESRD patients receiving hemodialysis. Nephron. 2001;87:249–56.

    Article  PubMed  CAS  Google Scholar 

  93. Haviv YS, Shpichinetsky V, Goldschmidt N et al. The common mutations C677T and A1298C in the human methylenetetrahydrofolate reductase gene are associated with hyperhomocysteinemia and cardiovascular disease in hemodialysis patients. Nephron. 2002;92:120–6.

    Article  PubMed  CAS  Google Scholar 

  94. Dudman NPB. An alternative view of homocysteine. Lancet. 1999;354:2072–4.

    Article  PubMed  CAS  Google Scholar 

  95. Brattstrom L, Wilcken DE. Homocysteine and cardiovascular disease: cause or effects? Am J Clin Nutr. 2000;72: 315–23.

    PubMed  CAS  Google Scholar 

  96. Starkebaum G, Haarlan JM. Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine. J Clin Invest. 1986;77:1370–6.

    Article  PubMed  CAS  Google Scholar 

  97. Celermajer DS, Sorensen K, Ryalls M et al. Impaired endothelial function occurs in the systemic arteries of children with homozygous homocystinuria but not in their heterozygous parents. J Am Coll Cardiol. 1993;22:854–8.

    Article  PubMed  CAS  Google Scholar 

  98. Rolland PH, Friggi A, Barlatier A et al. Hyperhomocysteinemia-induced vascular damage in the minipig. Captopril-hydrochlorothiazide combination prevents elastic alterations. Circulation. 1995;91:1161–74.

    Article  PubMed  CAS  Google Scholar 

  99. Kottke-Marchant K, Green R, Jacobsen D, Dicorleto P. Subcytotoxic homocysteine increases monocyte adhesion to human aortic endothelial cells. Blood. 1990;76:511 (abstract).

    Google Scholar 

  100. Kanani PM, Sinkey CA, Browning RL et al. Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst(e)inemia in humans. Circulation. 1999; 100:1161–8.

    Article  PubMed  CAS  Google Scholar 

  101. Nappo F, De Rosa N, Marfella R et al. Impairment of endothelial functions by acute hyperhomocysteinemia and reversal by antioxidant vitamins. J Am Med Assoc. 1999; 281:2113–18.

    Article  CAS  Google Scholar 

  102. Mujumdar VS, Aru GM, Tyagi SC. Induction of oxidative stress by homocyst(e)ine impairs endothelial function. J Cell Biochem. 2001;82:491–500.

    Article  PubMed  CAS  Google Scholar 

  103. Blacher J, Demuth K, Guérin AP et al. Influence of biochemical alterations on arterial stiffness in patients with endstage renal disease. Arterioscler Thromb Vasc Biol. 1998; 18:535–41.

    Article  PubMed  CAS  Google Scholar 

  104. Blacher J, Demuth K, Guérin AP et al. Association between plasma homocysteine concentrations and cardiac hypertrophy in end-stage renal disease. J Nephrol. 1999;12:248–55.

    PubMed  CAS  Google Scholar 

  105. Bostom AG, Shemin D, Verhoeff P et al. Elevated fasting total plasma homocysteine levels and cardiovascular disease outcomes in maintenance dialysis patients. A prospective study. Arterioscler Thromb Vasc Biol. 1997;17:2554–8.

    Article  PubMed  CAS  Google Scholar 

  106. Moustapha A, Naso A, Nahlawi M et al. Prospective study of hyperhomocysteinemia as an adverse cardiovascular risk factor in end-stage renal disease. Circulation. 1998;97:138–41.

    Article  PubMed  CAS  Google Scholar 

  107. Dierkes J, Domrose U, Westphal S et al. Cardiac troponin T predicts mortality in patients with end-stage renal disease. Circulation. 2000;102:1964–9.

    Article  PubMed  CAS  Google Scholar 

  108. Mallamaci F, Zoccali C, Tripepi G et al. Hyperhomocysteinemia predicts cardiovascular outcomes in hemodialysis patients. Kidney Int. 2002;61:609–14.

    Article  PubMed  Google Scholar 

  109. Refsum H, Ueland PM, Nygard O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med. 1998; 49:31–62.

    Article  PubMed  CAS  Google Scholar 

  110. Bortolotto LA, Safar ME, Billaud E et al. Plasma homocysteine, aortic stiffness, and renal function in hypertensive patients. Hypertension. 1999;34:837–42.

    Article  PubMed  CAS  Google Scholar 

  111. Perry IJ. Homocysteine, hypertension and stroke. J Hum Hypertens. 1999;13:289–93.

    Article  PubMed  CAS  Google Scholar 

  112. Perry IJ. Homocysteine and risk of stroke. J Cardiovasc Risk. 1999;6:235–40.

    PubMed  CAS  Google Scholar 

  113. Lin N, Chen Y-F, Zou A-P. Implications of hyperhomocysteinemia in glomerular sclerosis in hypertension. Hypertension. 2002;39:443–8.

    Article  Google Scholar 

  114. Dudman NP, Hichs C, Wang J, Wilcken DE. Human arterial endothelial cell detachment in vitro: its promotion by homocysteine and cysteine. Atherosclerosis. 1991;91:77–83.

    Article  PubMed  CAS  Google Scholar 

  115. Woo KS, Sanderson JE, Sun YY et al. Hyperhomocyst(e)inemia is a risk factor for arterial endothelial dysfunction in humans. Circulation. 1997;96:2542–4.

    Article  PubMed  CAS  Google Scholar 

  116. Chambers JC, McGregor A, Jean-Marie J, Kooner JS. Acute hyperhomocysteinemia and endothelial dysfunction. Lancet. 1998;351:36–7.

    Article  PubMed  CAS  Google Scholar 

  117. Hajjar KA. Homocysteine-induced modulation of tissue plasminogen activator binding to its endothelial cell membrane receptor. J Clin Invest. 1993;91:2873–9.

    Article  PubMed  CAS  Google Scholar 

  118. Lentz SR, Sadler JE. Inhibition of thrombomodulin surface expression and protein C activation by the thrombogenic agent homoysteine. J Clin Invest. 1991;88:1906–14.

    Article  PubMed  CAS  Google Scholar 

  119. Lentz SR, Sadler JE. Homocysteine inhibits von Willebrand factor processing and secretion by preventing transport from the endoplasmic reticulum. Blood. 1993;81:683–9.

    PubMed  CAS  Google Scholar 

  120. Rodgers GM, Conn MT. Homocysteine, an atherogenic stimulus, reduces protein C activation by arterial and venous endothelial cells. Blood. 1990;75:895–901.

    PubMed  CAS  Google Scholar 

  121. Harpel PC, Chang VT, Borth W. Homocysteine and other sulfhydryl compounds enhance the binding of lipoprotein(a) to fibrin: a potential biochemical link between thrombosis, atherogenesis and sulfhydryl compound metabolism. Proc Natl Acad Sci USA. 1992;89:10193–7.

    Article  PubMed  CAS  Google Scholar 

  122. Kunz K, Petitjean P, Lisri M et al. Cardiovascular morbidity and endothelial dysfunction in chronic haemodialysis patients: is homocyst(e)ine the missing link? Nephrol Dial Transplant. 1999;14:1934–42.

    Article  PubMed  CAS  Google Scholar 

  123. Bellany MF, McDowell IF, Ramsey MW et al. Oral folate enhances endothelial function in hyperhomocysteinaemic subjects. Eur J Clin Invest. 1999;29:657–62.

    Article  Google Scholar 

  124. Wilmink HW, Stroes ES, Erkelens WD et al. Influence of folic acid on postprandial endothelial dysfunction. Arterioscler Thromb Vasc Biol. 2000;20:185–8.

    Article  PubMed  CAS  Google Scholar 

  125. Thamyrajah J, Landray MJ, McGlynn FJ et al. Does folic acid decrease plasma homocysteine and improve endothelial function in patients with predialysis renal failure? Circulation. 2000;102:871–5.

    Article  Google Scholar 

  126. Van Guldener C, Janssen MiJ, Lambert J et al. Folic acid treatment of hyperhomocysteinemia in peritoneal dialysis patients: no change in endothelial function after long-term therapy. Pert Dial Int. 1998;18:282–9.

    Google Scholar 

  127. Levine GN, Frei B, Koulouris SN et al. Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation. 1996;93:1107–13.

    Article  PubMed  CAS  Google Scholar 

  128. Ting HH, Timimi FK, Haley EA et al. Vitamin C improves endothelium-dependent vasodilation in forearm resistance vessels of humans with hypercholesterolemia. Circulation. 1997;95:2617–22.

    Article  PubMed  CAS  Google Scholar 

  129. Chambers JC, McGregor A, Jean-Marie J et al. Demonstration of rapid onset vascular endothelial dysfunction after hyperhomocysteinemia: an effect reversible with vitamin C therapy. Circulation. 1999;99:1156–60.

    Article  PubMed  CAS  Google Scholar 

  130. Outinen PA, Sood SK, Pfeifer SI et al. Homocysteineinduced endoplasmatic reticulum stress and growth arrest leads to specific changes in gene expression in human vascular endothelial cells. Blood. 1999;94:959–67.

    PubMed  CAS  Google Scholar 

  131. Böger RH, Bode-Böger SM, Sydow K et al. Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase, is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2000;20:1557–64.

    Article  PubMed  Google Scholar 

  132. Suliman ME, Qureshi AR, Barany P et al. Hyperhomocysteinemia, nutritional status, and cardiovascular disease in hemodialysis patients. Kidney Int. 2000;57:1727–35.

    Article  PubMed  CAS  Google Scholar 

  133. Suliman ME, Barany P, Filho JC et al. Influence of nutritional status on plasma and erythrocyte sulphur amino acids, sulph-hydryls, and inorganic sulphate in end-stage renal disease. Nephrol Dial Transplant. 2002;17:1050–6.

    Article  PubMed  CAS  Google Scholar 

  134. Suliman ME, Stenvinkel P, Barany P et al. No association between plasma total homocysteine (tHcy) in end-stage renal disease (ESRD) patients (pts). J Am Soc Nephrol. 2002;13:466A.

    Google Scholar 

  135. Thambyrajah J, Landray MJ, McGlynn FJ et al. Abnormalities of endothelial function in patients with predialysis renal failure. Heart. 2000;83:205–9.

    Article  PubMed  CAS  Google Scholar 

  136. Joannides R, Bakkali EH, Leroy F et al. Altered flowdependent vasodilatation of conduit arteries in maintenance haemodialysis. Nephrol Dial Transplant. 1997;12:2623–8.

    Article  PubMed  CAS  Google Scholar 

  137. Van Guldener C, Lambert J, Janssen MJ et al. Endotheliumdependent vasodilation and distensibility of large arteries in chronic haemodialysis patients. Nephrol Dial Transplant. 1997;12:14–18.

    PubMed  Google Scholar 

  138. Passauer J, Bussemaker E, Range U et al. Evidence in vivo showing increase of baseline nitric oxide generation and impairment of endothelium-dependent vasodilatation in normotensive patients on chronic hemodialysis. J Am Soc Nephrol. 2000;11:1726–34.

    PubMed  CAS  Google Scholar 

  139. Vallance P, Leone A, Calver A et al. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet. 1992;339:572–5.

    Article  PubMed  CAS  Google Scholar 

  140. Macallister RJ, Rambausek MH, Vallance P et al. Concentration of dimethyl-L-arginine in the plasma of patients with end-stage renal failure. Nephrol Dial Transplant. 1996;11:2449–52.

    Article  PubMed  CAS  Google Scholar 

  141. Anderstam B, Katzarski K, Bergström J. Serum levels of NG, NG-dimethyl-L-arginine, a potential endogenous nitric oxide inhibitor in dialysis patients. J Am Soc Nephrol. 1997; 8:1437–42.

    PubMed  CAS  Google Scholar 

  142. Schmidt RJ, Domico J, Samsell LS et al. Indices of activity of the nitric oxide system in hemodialysis patients. Am J Kidney Dis. 1999;34:228–34.

    Article  PubMed  CAS  Google Scholar 

  143. Kielstein JT, Böger RH, Bode-Böger SM et al. Asymmetric dimethylarginine plasma concentrations differ in patients with end-stage renal disease: relationship to treatment method and atherosclerotic disease. J Am Soc Nephrol. 1999;10:594–600.

    PubMed  CAS  Google Scholar 

  144. Zoccali C, Bode-Böger S, Mallamaci F et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet. 2001;358:2113–17.

    Article  PubMed  CAS  Google Scholar 

  145. Zoccali C, Benedetto FA, Maas R et al. Asymmetric dimethylarginine, C-reactive protein, and carotid intima-media thickness in end-stage renal disease. J Am Soc Nephrol. 2002; 13:490–6.

    Article  PubMed  CAS  Google Scholar 

  146. Kielstein JT, Böger RH, Bode-Böger SM et al. Marked increase of asymmetric dimethylarginine in patients with incipient primary chronic renal disease. J Am Soc Nephrol. 2002;13:170–6.

    PubMed  CAS  Google Scholar 

  147. Miyazaki H, Matsuoka H, Cooke JP et al. Endogenous nitric oxide synthase inhibitor. A novel marker of atherosclerosis. Circulation. 1999;99:1141–6.

    Article  PubMed  CAS  Google Scholar 

  148. Cooke JP. Does ADMA cause endothelial dysfunction? Arterioscler Thromb Vasc Biol. 2000;20:2032–7.

    Article  PubMed  CAS  Google Scholar 

  149. Böger RH, Bode-Böger SM, Szuba A et al. Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction. Its role in hypercholesterolemia. Circulation. 1998;98:1842–7.

    Article  PubMed  Google Scholar 

  150. Moeslinger T, Friedl R, Volf I et al. Urea induces macrophage proliferation by inhibition of inducible nitric oxide synthesis. Kidney Int. 1999;56:581–8.

    Article  PubMed  CAS  Google Scholar 

  151. Moeslinger T, Spieckermann PG. Urea-induced inducible nitric oxide synthase inhibition and macrophage proliferation. Kidney Int. 2001(Suppl.);78:S2–8.

    Google Scholar 

  152. Giachellii CM. Ectopic calcification: gathering hard facts about soft tissue mineralization. Am J Pathol. 1999;154:671–5.

    Article  Google Scholar 

  153. Alfrey AC, Ibels LS. Role of phosphate and pyrophosphate in soft tissue calcification. Adv Exp Med Biol. 1978;103:187–93.

    Article  PubMed  CAS  Google Scholar 

  154. Block GA, Port FK. Re-evaluation of risks associated with hyperphosphatemia and hyperparathyroidism in dialysis patients: recommendations for a change in management. Am J Kidney Dis. 2000;35:1236–7.

    Article  Google Scholar 

  155. Block GA, Hulbert ST, Levin NW, Port FK. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis. 1998;31:607–17.

    Article  PubMed  CAS  Google Scholar 

  156. Goodman WG, Goldin J, Kuizon BD et al. Coronary artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med. 2000;342:1478–83.

    Article  PubMed  CAS  Google Scholar 

  157. Jono S, Mckee MD, Murry CE et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ Res. 2000; 87:e10–17.

    Article  PubMed  CAS  Google Scholar 

  158. Drüecke TB, Rostand SG. Progression of vascular calcification in uraemic patients: can it be stopped? Nephrol Dial Transplant. 2002;17:1365–8.

    Article  Google Scholar 

  159. Shearer MJ. Role of vitamin K and gla proteins in the pathophysiology of osteoporosis and vascular calcification. Curr Opin Clin Nutr Metab Care. 2000;3:433–8.

    Article  PubMed  CAS  Google Scholar 

  160. Ketteler M, Bogaritz P, Westenfeld R et al. Association of low fetuin (AHSG) concentrations in serum with cardiovascular mortality in patients and dialysis: a cross-sectional study. Lancet. 2003;361:827–33.

    Article  PubMed  CAS  Google Scholar 

  161. Westenfeld R, Heiss A, Ketteler M et al. Calciphylaxis is linked to systemic deficiency of the calcification inhibitor Ahsg/fetuin. J Am Soc Nephrol. 2002;13:219A.

    Google Scholar 

  162. Massry SG, Smogorzewski M. Mechanisms through which parathyroid hormone mediates its deleterious effects on organ function in uremia. Semin Nephrol. 1994;14:219–31.

    PubMed  CAS  Google Scholar 

  163. Jono S, Nishizawa Y, Shioi A, Morii H. Parathyroid hormone-related peptide as a regulator of vascular calcification. Its inhibitory action on in vitro calcification by bovine vascular smooth muscle cells. Arteroscler Thromb Vasc Biol. 1997;17:1135–42.

    Article  CAS  Google Scholar 

  164. Nakayama T, Ohtsuru A, Enomoto H et al. Coronary atherosclerotic smooth muscle cells overexpress human parathyroid hormone-related peptids. Biochem Biophys Res Commun. 1994;200:1028–35.

    Article  PubMed  CAS  Google Scholar 

  165. Reslerova M, Moe SM. Vascular calcification in dialysis patients: pathogenesis and consequences. Am J Kidney Dis. 2002;96(Suppl. 1):S96–9.

    Google Scholar 

  166. Moe SM, O’Neill KD, Duan D et al. Medial artery calcification in ESRD patients is associated with deposition of bone matrix proteins. Kidney Int. 2002;61:638–47.

    Article  PubMed  Google Scholar 

  167. Shoji T, Nishizawa Y, Kawagishi T et al. Intermediatedensity lipoprotein as an independent risk factor for aortic atherosclerosis in hemodialysis patients. J Am Soc Nephrol. 1998;9:1277–84.

    PubMed  CAS  Google Scholar 

  168. Shoji T, Ishimura E, Inaba M, Tabata T, Nishizawa Y. Atherogenic lipoproteins in end-stage renal disease. Am J Kidney Dis. 2001;38(Suppl. 1):S30–3.

    Article  PubMed  CAS  Google Scholar 

  169. Shoji T, Emoto M, Shinohara K et al. Diabetes mellitus, aortic stiffness, and cardiovascular mortality in end-stage renal disease. J Am Soc Nephrol. 2001;12:2117–24.

    PubMed  CAS  Google Scholar 

  170. Ishimura E, Shoji T, Emoto M et al. Renal insufficiency accelerates atherosclerosis in patients with type 2 diabetes mellitus. Am J Kidney Dis. 2001;38(Suppl. 1):S186–90.

    Article  PubMed  CAS  Google Scholar 

  171. Shoji T, Emoto M, Tabata T et al. Advanced atherosclerosis in predialysis patients with chronic renal failure. Kidney Int. 2002;61:2187–92.

    Article  PubMed  Google Scholar 

  172. Nishizawa Y, Shoji T, Kakiya R et al. Non-high-density lipoprotein cholesterol (non-HDL-C) as a predictor of cardiovascular mortality in patients with end-stage renal disease. Kidney Int. 2003;63(Suppl. 84):S117–20.

    Article  Google Scholar 

  173. Attman PO, Samuelsson O, Alaupovic P. Lipoprotein metabolism and renal failure. Am J Kidney Dis. 1993;21: 573–91.

    PubMed  CAS  Google Scholar 

  174. Attman PO, Alaupovic P, Tavella M, Knight-Gibson C. Abnormal lipid and apolipoprotein composition of major lioporotein density classes in patients with chronic renal failure. Nephrol Dial Transplant. 1996;11:63–9.

    Article  PubMed  CAS  Google Scholar 

  175. Samuelsson O, Attman PO, Knight-Gibson C et al. Lipoprotein abnormalities without hyperlipidemia in moderate renal insufficiency. Nephrol Dial Transplant. 1994;9:1580–5.

    PubMed  CAS  Google Scholar 

  176. Moberly JB, Attman PO, Samuelsson O et al. Apolipoprotein hypertriglyceridemia and triglyceride-rich lipoproteins in uremia. Miner Electrolyte Metab. 1999;25:258–62.

    Article  PubMed  CAS  Google Scholar 

  177. Attman PO, Samuelsson O, Moberly J et al. Apolipoprotein of dialysis. Kidney Int. 1999;55:1536–42.

    Article  PubMed  CAS  Google Scholar 

  178. Kronenberg F, Lingenhel A, Neyer U et al. Prevalence of dyslipidemic risk factors in hemodialysis and CAPD patients. Kidney Int. 2003;63(Suppl. 84):S113–16.

    Article  Google Scholar 

  179. Kronenberg F, Stühlinger M, Trenkwalder E et al. Low apolipoprotein A-IV plasma concentrations in men with coronary artery disease. J Am Coll Cardiol. 2003;36:751–7.

    Article  Google Scholar 

  180. Warner MM, Guo J, Zhao Y. The relationship between plasma apolipoprotein A-IV levels and coronary heart disease. Chin Med J (Engl.) 2001;114:275–9.

    CAS  Google Scholar 

  181. Kronenberg F, Kuen E, Ritz E et al. Apolipoprotein A-IV serum concentrations are elevated in mild and moderate renal failure. J Am Soc Nephrol. 2002;13:461–9.

    PubMed  CAS  Google Scholar 

  182. Duverger N, Tremp G, Caillaud JM et al. Protection against atherogenesis in mice mediated by human apoliporotein A-IV. Science. 1996;273:966–8.

    Article  PubMed  CAS  Google Scholar 

  183. Cohen RD, Castellani LW, Qiao JH et al. Reduced aortic lesions and elevated high density lipoprotein levels in transgenic mice overexpressing mouse apolipoprotein A-IV. J Clin Invest. 1997;99:1906–16.

    Article  PubMed  CAS  Google Scholar 

  184. Dandona P, Aljada A, Mohanty P. The anti-inflammatory and potential anti-atherogenic effect of insulin: a new paradigm. Diabetologia. 2002;45:924–30.

    Article  PubMed  CAS  Google Scholar 

  185. Kernan WN, Inzucchi SE, Viscolii CM, Brass LM, Bravata DM, Horwitz RI. Insulin resistance and risk for stroke. Neurology. 2002;59:809–15.

    Article  PubMed  CAS  Google Scholar 

  186. Golden SH, Folsom AR, Coresh J, Sharrett AR, Szklo M, Brancati F. Risk factor groupings related to insulin resistance and their synergistic effects on subclinical atherosclerosis; the atherosclerosis risk in communities study. Diabetes. 2002;51:3069–76.

    Article  PubMed  CAS  Google Scholar 

  187. Shinohara K, Shoji T, Emoto M et al. Insulin resistance as an independent predictor of cardiovascular mortality in patients with end-stage renal disease. J Am Soc Nephrol. 2002;13:1894–900.

    Article  PubMed  Google Scholar 

  188. Hörl MP, Hörl WH. Hemodialysis-associated hypertension: pathophysiology and therapy. Am J Kidney Dis. 2002;39: 227–44.

    Article  PubMed  Google Scholar 

  189. Girndt M, Sester U, Sester M, Kaul H, Köhler H. Impaired cellular immune function in patients with end-stage renal failure. Nephrol Dial Transplant. 1999;14:2807–10.

    Article  PubMed  CAS  Google Scholar 

  190. Hörl WH. Hemodialysis membranes: interleukins, biocompatibility, and middle molecules. J Am Soc Nephrol. 2002;13:S62–71.

    PubMed  Google Scholar 

  191. London GM, Drüeke TB. Atherosclerosis and arteriosclerosis in chronic renal failure. Kidney Int. 1997;51: 1678–95.

    Article  PubMed  CAS  Google Scholar 

  192. Zoccali C. Cardiovascular risk in uremic patients: is it fully explained by classical risk factors? Nephrol Dial Transplant. 2000;15:454–6.

    Article  PubMed  CAS  Google Scholar 

  193. Baigent C, Burbury K, Wheeler D. Premature cardiovascular disease in chronic renal failure. Lancet. 2000;356: 147–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hörl, W.H. (2004). The uremic syndrome and pathophysiology of chronic renal failure. In: Hörl, W.H., Koch, K.M., Lindsay, R.M., Ronco, C., Winchester, J.F. (eds) Replacement of Renal Function by Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2275-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2275-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7012-1

  • Online ISBN: 978-1-4020-2275-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics