Skip to main content

Abstract

Besides the need to correct sodium and water overload and derangement in electrolytic and acid-base equilibrium, the rationale for dialytic therapy lies in the hypothesis that the uremic syndrome is mainly related to the accumulation of toxins removable by dialysis. At the beginning of the 1970s Babb and coworkers developed what they termed the square meter-hour hypothesis (1). This theory is based on the supposition that dialysis adequacy depends on the amount of middle molecule removal. A ‘dialysis index’ (2) was then developed to quantify the dialysis dose, calculated on the basis of the following equation: DI = (3.5 × 10-3) × (KT + 168 Kr)/S where K is the dialyzer clearance (ml/min) of vitamin B12, assumed as surrogate marker for solutes with a molecular weight of 1500 Da; T is the weekly dialysis time (h); Kr is the residual renal function (ml/min); S is the body surface area (m2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babb AL, Popovich RP, Christopher TG, Scribner BH. The genesis of the square meter-hour hypothesis. Trans Am Soc Artif Intern Organs. 1971;17:81–91.

    PubMed  CAS  Google Scholar 

  2. Milutinovich J, Strand M, Casaretto A et al. Clinical impact of residual glomerulofiltration rate on dialysis time. Trans Am Soc Artif Intern Organs. 1974;20:410–16.

    Google Scholar 

  3. Hoenich NA, Frost TH, Kerr DNS. Dialysers. In: Drukker W, Parsons FM, Maher JF, editors. Replacement of Renal Function by Dialysis, The Hague: Martinus Nijhoff, 1979: 80–124.

    Chapter  Google Scholar 

  4. Lowrie EG. History and organization of the National Cooperative Dialysis Study. Kidney Int. 1983;23(Suppl. 13): S1–7.

    Google Scholar 

  5. Sargent JA, Gotch FA. The analysis of concentration dependence of uremic lesions in clinical studies. Kidney Int. 1975;7(Suppl. 2):S35–43.

    Google Scholar 

  6. Gotch FA, Sargent JA. A mechanistic analysis of the National Cooperative Dialysis Study (NCDS). Kidney Int. 1985;28:526.

    Article  PubMed  CAS  Google Scholar 

  7. Keshaviah P, Collins A. A re-appraisal of the national cooperative dialysis study. Kidney Int. 1988;33:227 (abstract).

    Google Scholar 

  8. Hakim RM, Depner TA, Parker TF. Adequacy of hemodialysis. Am J Kidney Dis. 1992;20:107.

    PubMed  CAS  Google Scholar 

  9. Charra B, Calemard E, Ruffet M et al. Survival as an index of adequacy of dialysis. Kidney Int. 1992;41:1286.

    Article  PubMed  CAS  Google Scholar 

  10. Shen FH, Hsu KT. Lower mortality and morbidity associated with higher Kt/V in hemodialysis patients. Am Soc Nephrol. 1990;1:377.

    Google Scholar 

  11. Collins A, Liao M, Umen A, Hanson G, Keshaviah P. High-efficiency bicarbonate hemodialysis has a lower risk of death than standard acetate dialysis. Am Soc Nephrol. 1991;2:318.

    Google Scholar 

  12. Shen FH, Cheng KR. High clearance hemodialysis is associated with low mortality and morbidity: 5 years experience. Am Soc Nephrol. 1993;4:385 (abstract).

    Google Scholar 

  13. Hakim RM, Breyer J, Ismail N, Schulman G. Effects of dose of dialysis on morbidity and mortality. Am J Kidney Dis. 1994;23:661.

    PubMed  CAS  Google Scholar 

  14. Parker TF, Husni L, Huang W, Lew N, Lowrie EG, Dallas Nephrology Associates. Survival of hemodialysis patients in the United States is improved with a greater quantity of dialysis. Am J Kidney Dis. 1994;23:670.

    PubMed  Google Scholar 

  15. Parker T. Hemodialysis adequacy. In: Henrich WL, editor. Principles and Practice of Dialysis. Baltimore: Williams & Wilkins, 1994:63.

    Google Scholar 

  16. Held PJ, Port FK, Wolfe RA et al. The dose of hemodialysis and patient mortality. Kidney Int. 1996;50:550–6.

    Article  PubMed  CAS  Google Scholar 

  17. Eknoyan G, Levey AS, Beck GJ et al. The hemodialysis (HEMO) study: rationale for selection of interventions. Semin Dial. 1996;9:21–33.

    Google Scholar 

  18. Tolchin N, Roberts JL, Hayashi J, Lewis EJ. Metabolic consequences of high mass-transfer hemodialysis. Kidney Int. 1977;11:366.

    Article  PubMed  CAS  Google Scholar 

  19. Lysaght MJ. Hemodialysis membranes in transition. Contrib Nephrol. 1988;61:1.

    PubMed  CAS  Google Scholar 

  20. Deppisch R, Ritz E, Hansch GM, Schols M, Rauterberg EW. Bioincompatibility — perspectives in 1993. Kidney Int. 1994;45(Suppl. 44):S77.

    Google Scholar 

  21. Hakim RM. Choice of the hemodialysis membrane. In: Henrich WL, editor. Principles and Practice of Dialysis. Baltimore: Williams & Wilkins. 1994:1.

    Google Scholar 

  22. Tokars JI, Alter MJ, Favero MS, Moyer LA, Bland LA. National surveillance of dialysis associated diseases in the United States, 1991. ASAIO J. 1993;39:966.

    PubMed  CAS  Google Scholar 

  23. Collins AJ. High-efficiency treatments using conventional equipment. In: Stein JH, editor. Hemodialysis: high-efficiency Treatments. Series: Contemporary Issues in Nephrology, Vol 27. Churchill Livingstone, 1993:91–104.

    Google Scholar 

  24. Henderson L, Besarab A, Bluemle LW Jr. Blood purification by ultrafiltration and fluid replacement (diafiltration). Trans Am Soc Artif Intern Organs. 1967;13:216.

    Google Scholar 

  25. Henderson LW, Colton CK, Ford CA. Kinetics of hemodiafiltration. H. Clinical characterization of a new blood cleansing modality. J Am Soc Nephrol. 1997;8:494–508.

    PubMed  CAS  Google Scholar 

  26. Koch KM, Shaldon S, Baldamus CA et al. Convective mass transport in dialysis. Proc EDTA. 1985;22:155–60.

    Google Scholar 

  27. Henderson LW. Hemodynamic instability during different forms of dialysis therapy: do we really know why? Blood Purif. 1996;14:395–404.

    Article  PubMed  CAS  Google Scholar 

  28. Baldamus CA, Ernst W, Fassbinder W, Koch KM. Differing haemodynamic stability due to differing sympathetic response: comparison of ultrafiltration, haemodialysis and haemofiltration. Proc EDTA. 1980;17:205–12.

    CAS  Google Scholar 

  29. Fox SD, Henderson LW. Cardiovascular response during hemodialysis and hemofiltration: thermal, membrane, and catecholamine influences. J Blood Purif. 1993;11:224–36.

    Article  CAS  Google Scholar 

  30. van Kuijk WHM, Hillion D, Savoiu C, Leunissen KML. Critical role of the extracorporeal blood temperature in the hemodynamic response during hemofiltration. J Am Soc Nephrol. 1997;8:849–55.

    Google Scholar 

  31. Henderson LW, Koch KM, Dinarello CA, Shaldon S. Hemodialysis hypotension: the interleukin hypothesis. Blood Purif. 1983;1:3–8.

    Article  CAS  Google Scholar 

  32. Quellhorst E, Schuenemann B, Mietzsch G. Long-term hemofiltration in ‘poor risk’ patients. Trans Am Soc Artif Intern Organs. 1987;33:758–64.

    CAS  Google Scholar 

  33. Hufler M, Asmus G, von Herrath D, Schaefer K. Hemodialysis or hemofiltration: the patients — view. Blood Purif. 1987:5:1–3.

    Article  PubMed  CAS  Google Scholar 

  34. Schneider H, Streicher E. Mass transfer characterization of a new polysulfone membrane. Artif Organs. 1985;2:180–3.

    Article  Google Scholar 

  35. Rockel A, Hertel J, Fiegel P, Abdelhamid S, Panitz N, Walb D. Permeability and secondary membrane formation of a high flux polysulfone hemofilter. Kidney Int. 1986;30: 429–32.

    Article  PubMed  CAS  Google Scholar 

  36. Henderson LW, Sanfelippo ML, Beans E. ‘On-line’ preparation of sterile pyrogen-free electrolyte solution. Trans Am Soc Artif Intern Organs. 1978;24:465–7.

    CAS  Google Scholar 

  37. Henderson LW. Dialysis in the 21st century. Am J Kidney Dis. 1996;28:951–7.

    Article  PubMed  CAS  Google Scholar 

  38. Ledebo I. Predilution hemofiltration: a new technology applied to an old therapy. Int J Artif Organs. 1995;18: 735–42.

    PubMed  CAS  Google Scholar 

  39. Ledebo I. Prescription of optimal hemodiafiltration and hemofiltration. Nieren Hochdruckkr. 1999;28:29–35.

    Google Scholar 

  40. Altieri P, Sorba GB, Bolasco PG et al. Sardinian Collaborative Study Group of On-line hemofiltration, Italy. Online predilution hemofiltration versus ultrapure high-flux hemodialysis: a multicenter prospective study in 23 patients. Blood Purif. 1997:15:169–81.

    Article  PubMed  CAS  Google Scholar 

  41. Altieri P, Sorba GB, Bolasco PG et al. Predilution hemofiltration: quality of treatment-quality of life. Int J Artif Organs. 1998;21:589–90 (abstract).

    Google Scholar 

  42. Efvergren M, Gutierrez A, Ahlberg M, Alvestrand A. Effect of hemodialysis and high volume, on line hemofiltration on intra- and interdialytic side effects: a single-blind, cross-over study. J Am Soc Nephrol. 1998;9:206A (abstract).

    Google Scholar 

  43. Acchiardo S, Burk L, Banister D. High-flux hemodialysis. Kidney Int. 1987;31:226.

    Google Scholar 

  44. Campbell J, Dumler F, Stalla K et al. High-flux short time hemodialysis: initial experience. Kidney Int. 1987;31:229.

    Google Scholar 

  45. Gejyo F, Yamada T, Odani S et al. A new form of amyloid protein associated with hemodialysis was identified as β2-microglobulin. Biochem Biophys Res Commun. 1985;129: 701–6.

    Article  PubMed  CAS  Google Scholar 

  46. Karlsson FA, Groth T, Sege K, Wibel L, Peterson PA. Turnover in humans of beta2-microglobulin: the constant chain of HLA antigens. Eur J Clin Invest. 1980;10:293–300.

    Article  PubMed  CAS  Google Scholar 

  47. Statius Van Eps LW, Schardijn GHC. Beta2-microglobulin and the renal tubule. In: Lubec G, editor. Non-invasive Diagnosis of Kidney Disease. Basel: Karger, 1983:103–43.

    Google Scholar 

  48. Schardijn G, Statius van Eps LW, Swaak AJG, Kager JCGM, Persijn JP. Urinary beta2-microglobulin in upper and lower urinary tract infections. Lancet. 1979;1:805–7.

    Article  PubMed  CAS  Google Scholar 

  49. Zingraff J, Beyne P, Urena M et al. Influence of hemodialysis membranes on beta-2 microglobulin kinetics: in vivo and in vitro studies. Nephrol Dial Transplant. 1988;3: 284–90.

    PubMed  CAS  Google Scholar 

  50. Floege J, Granolleras C, Bingel M et al. Beta-2-microglobulin kinetics during hemodialysis and hemofiltration. Nephrol Dial Transplant. 1987;1:223–8.

    Google Scholar 

  51. Vincent C, Pozet N, Revillard JP. Plasma beta2-microglobulin turnover in renal insufficiency. Acta Clin Belg. 1980(Suppl. 10):2–13.

    Google Scholar 

  52. Bauer JH, Brooks CS. Body fluid composition in chronic renal failure. Clin Nephrol. 1981;16:114–18.

    PubMed  CAS  Google Scholar 

  53. Sargent JA, Gotch FA. Principles and biophysics of dialysis. In: Drukker W, Parsons FM, Maher JF, editors. Replacement of Renal Function by Dialysis. Boston: Martinus Nijhoff, 1983:53–96.

    Chapter  Google Scholar 

  54. Leypoldt JK, Cheung AK, Carroll CE et al. Effect of dialysis membranes and middle molecule removal on chronic hemodialysis patient survival. Am J Kidney Dis. 1999;33: 349–55.

    Article  PubMed  CAS  Google Scholar 

  55. Lowrie EG, Lew NL. Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis. 1990;15:458–82.

    PubMed  CAS  Google Scholar 

  56. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. Adequacy of dialysis and nutrition in continuous peritoneal dialysis. Association with clinical outcomes. J Am Soc Nephrol. 1996;7:198–207.

    Google Scholar 

  57. Horl WH, Haag-Weber M, Georgopoulos A, Block LH. Physiochemical characterization of a polypeptide present in uremic serum that inhibits the activity of polymorphonuclear cells. Proc Natl Acad Sci USA. 1990;87:6353–7.

    Article  PubMed  CAS  Google Scholar 

  58. Haag-Weber M, Cohen MG, Horl WH. GIP and DIP: a new view of uraemic toxicity. Nephrol Dial Transplant. 1994;9: 382–8.

    Article  PubMed  CAS  Google Scholar 

  59. Tielmans C, Madhoun P, Lemars M, Schondere L, Goldman M, Vanherweghem JL. Anaphylactoid reactions during hemodialysis on AN69 membranes in patients receiving ACE inhibitors. Kidney Int. 1990;38:982–4.

    Article  Google Scholar 

  60. Parnes EL, Shapiro WB. Anaphylactoid reactions in hemodialysis patients treated with AN69 dialyzers. Kidney Int. 1991;40:1148–52.

    Article  PubMed  CAS  Google Scholar 

  61. Schulman G, Hakim R, Arias R, Silverberg M, Kaplan AP, Arbeit L. Bradykinin generation by dialysis membranes: possible role in anaphylactic reaction. J Am Soc Nephrol. 1993:3:1563–9.

    PubMed  CAS  Google Scholar 

  62. Craddock PR, Fehr J, Delmasso AP, Brigham KL, Jacob HS. Hemodialysis leukopenia: pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membranes. J Clin Invest. 1977;59:877–88.

    Article  Google Scholar 

  63. Jacob HS. Granulocyte-complement interaction: a beneficial antimicrobial mechanism that can cause disease. Arch Intern Med. 1978;138:461–3.

    Article  PubMed  CAS  Google Scholar 

  64. Chenoweth DE, Cheung AK, Ward DM, Henderson LW. Anaphylatoxin formation during hemodialysis: effects of different dialyzer membranes. Kidney Int. 1983;24:770–4.

    Article  PubMed  CAS  Google Scholar 

  65. Mahiout A, Jorres A, Meinhold H, Kessel M. Prostaglandin production and extracorporeal complement activation by dialyzer membranes. Trans Am Soc Artif Intern Organs. 1986;32:88–92.

    CAS  Google Scholar 

  66. Tolkoff-Rubin N, Nardini J, Fang L, Rubin R. Successful hemodialysis of patients at high risk of hemorrhage using the exval dialyzers. Dial Transplant. 1986;15:129.

    Google Scholar 

  67. Van Epps D, Chenoweth DE. Analysis of the binding of fluorescent C5a and C3a to human peripheral blood leukocytes. J Immunol. 1984;132:2862–7.

    PubMed  Google Scholar 

  68. Roccatello D, Manzucco G, Coppo R. Functional changes of monocytes due to dialysis membranes. Kidney Int. 1989;35:622–31.

    Article  PubMed  CAS  Google Scholar 

  69. Jahn B, Betz M, Deppisch R, Janssen O, Hansch GM, Ritz E. Stimulation of β2m synthesis in lymphocytes after exposure to cuprophane dialyzer membranes. Kidney Int. 1993;405:285–90.

    Google Scholar 

  70. Adler AJ, Berlyne GM. α-Thromboglobulin and platelet factor 4 levels during hemodialysis. Am Soc Artif Intern Organs. 1981;4:100–3.

    Google Scholar 

  71. Cheung AK, Chenoweth DE, Otsuka D, Henderson LW. Compartmental distribution of complement activation products in artificial kidneys. Kidney Int. 1986;30: 74–80.

    Article  PubMed  CAS  Google Scholar 

  72. Dinarello CA. Cytokines and biocompatibility. Blood Purif. 1990;8:208–13.

    Article  PubMed  CAS  Google Scholar 

  73. Dinarello CA. Interleukin-1 and tumor necrosis factor and their naturally occurring antagonists during hemodialysis. Kidney Int. 1992;38(Suppl.):S68–77.

    CAS  Google Scholar 

  74. Herbelin A, Nguyen AT, Urena P, Descamps-Latscha B. Induction of cytokines by dialysis membranes in normal whole blood: a new in vitro assay for evaluating membrane biocompatibility. Blood Purif. 1992;10:40–52.

    Article  PubMed  CAS  Google Scholar 

  75. Waniewski J, Lucjanek P, Werynski A. Impact of ultrafiltration on back-diffusion in hemodialyzers. Artif Organs. 1994;18:933–6.

    Article  PubMed  CAS  Google Scholar 

  76. Pereira BJ, Sundaram S, Barrett TW et al. Transfer of cytokine-inducing bacterial products across hemodialyzer membranes in the presence of plasma or whole blood. Clin Nephrol. 1996;46:394–401.

    PubMed  CAS  Google Scholar 

  77. Schindler R, Lonnemann G, Shaldon S, Koch KM, Dinarello CA. Induction of interleukin-1 and tumor necrosis factor during in vitro hemodialysis with different membranes. Contrib Nephrol. 1989;74:58–65.

    PubMed  CAS  Google Scholar 

  78. Lundberg L, Stegmayr BG, Wehle B. Backdiffusion or bicarbonate may stimulate complement activation during haemodialysis with low-flux membranes. Int J Artif Organs. 1994;17:131–6.

    PubMed  CAS  Google Scholar 

  79. Quellhorst E, Schunemann B. Beta-2 amyloidosis and haemofiltration. In: Geijo F, Brancaccio D, Bardin Y, editors. Dialysis Amyloidosis. Milan: Wichtig Editore, 1989:123–9.

    Google Scholar 

  80. Baz M, Durand C, Ragon A, Jaber K, Andrieu D, Merzouk T. Using ultrapure water in haemodialysis delays carpal tunnel syndrome. Int J Artif Organs. 1991;14:681–5.

    PubMed  CAS  Google Scholar 

  81. Sell DR, Lapolla A, Odetti P, Forgarty J, Monnier VM. Pentosidine formation in skin correlates with severity of complication in individuals with long standing IDDM. Diabetes. 1992;41:1286–92.

    Article  PubMed  CAS  Google Scholar 

  82. Dyer DG, Dunn JA, Thorpe SR et al. Accumulation of Maillard reaction products in skin collagen in diabetes and aging. J Clin Invest. 1993;91:2463–9.

    Article  PubMed  CAS  Google Scholar 

  83. Makita Z, Radoff S, Rayfield EJ et al. Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med. 1991;325:836–42.

    Article  PubMed  CAS  Google Scholar 

  84. Miyata T, Maeda K. Pathogenesis of dialysis-related amyloidosis. Curr Opin Nephrol Hypertens. 1995;4:493–7.

    Article  PubMed  CAS  Google Scholar 

  85. Miyata T, Jadoul M, Kurokawa K, van Ypersele de Strihou C. β2-Microglobulin in renal disease. J Am Soc Nephrol. 1998;9:1723–35.

    PubMed  CAS  Google Scholar 

  86. Gejyo F, Homma N, Suzuki Y, Arakawa M. Serum levels of β2-microglobulin as a new form of amyloid protein in patients undergoing long-term hemodialysis. N Engl J Med. 1986;314:585–6.

    Article  PubMed  CAS  Google Scholar 

  87. Miyata T, Inagi R, Iida Y et al. Involvement of β2-microglobulin modified with advanced glycation end products in the pathogenesis of hemodialysis-associated amyloidosis: induction of human monocyte chemotaxis and macrophage secretion of tumor necrosis factor-α and interleukin-1. J Clin Invest. 1994;93:521–8.

    Article  PubMed  CAS  Google Scholar 

  88. Makita Z, Radoff S, Rayfield EJ et al. Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med. 1991;325:836–42.

    Article  PubMed  CAS  Google Scholar 

  89. Zoccali C, Mallamaci F, Tripepi G. AGEs and carbonyl stress: potential pathogenetic factors of long-term uraemic complications. Nephrol Dial Transplant. 2000;15(Suppl. 2): 7–11.

    Article  PubMed  CAS  Google Scholar 

  90. Di Filippo S, Corti M, Andrulli S, Pontoriero G, Manzoni C, Locatelli F. Optimization of sodium removal in paired filtration dialysis by single pool sodium and conductivity kinetic models. Blood Purif. 1997;15:34–44.

    Article  PubMed  Google Scholar 

  91. Locatelli F, Andrulli S, Di Filippo S et al. Effect of on-line conductivity plasma ultrafiltrate kinetic modeling on cardiovascular stability of hemodialysis patients. Kidney Int. 1998;53:1052–60.

    Article  PubMed  CAS  Google Scholar 

  92. Amore A, Cirina P, Mitola S et al. Acetate intolerance is mediated by enhanced synthesis of nitric oxide by endothelial cells. J Am Soc Nephrol. 1997;8:1431–6.

    PubMed  CAS  Google Scholar 

  93. Bufano G, Grandi F, Ariano R, Atti M. Plasma levels of nitric oxide and peripheral vascular resistances during hemodialysis. J Am Soc Nephrol. 2000;11:258A.

    Google Scholar 

  94. Amore A, Cirina P, Gianoglio B, Peruzzi L, Coppo R. Endothelial cell apoptosis induced by nitric oxide (NO): a potential mechanism of vasculopathy during long-term dialysis. J Am Soc Nephrol. 1997;8:226A.

    Google Scholar 

  95. Coppo R, Amore A, Cirina P et al. Bradykinin and nitric oxide generation by dialysis membranes can be blunted by alkaline rinsing solutions. Kidney Int. 2000;58:881–8.

    Article  PubMed  CAS  Google Scholar 

  96. Lonnemann G, Schindler R, Dinarello CA, Koch KM. Removal of circulating cytokines by hemodialysis membranes in vitro. In: Faist E, Meakins J, Schildberg FW, editors. Host Defense Dysfunction in Trauma, Shock and Sepsis. Berlin: Springer Verlag, 1993:613–23.

    Chapter  Google Scholar 

  97. Barrera P, Janssen EM, Demacker PNM, Wetzels JFM, Van Der Meer JWM. Removal of interleukin-1 beta and tumor necrosis factor from human plasma by in vitro dialysis with polyacrylonitrile membranes. Lymphokine Cytokine Res. 1992;11:99–104.

    PubMed  CAS  Google Scholar 

  98. Schrander van der Meer AM, Ter Wee PM, Kan G, Donker AJM, Van Dorp WT. Improved cardiovascular variables during acetate-free biofiltration. Clin Nephrol. 1999;51: 304–9.

    Google Scholar 

  99. Galli G, Bianco F, Panzetta G. Acetate-free biofiltration: an effective treatment for high risk dialysis patients. In: Man NK, Botella J, Zucchelli P, editors. Blood Purification in Perspective: New Insights and Future Trends. Cleveland: ICAOT Press, 1992;2(320):169–72.

    Google Scholar 

  100. Noris M, Todeschini M, Casiraghi F et al. Effect of acetate, bicarbonate dialysis, and acetate-free biofiltration on nitric oxide synthesis: implications for dialysis hypotension. Am J Kidney Dis. 1998;32:115–24.

    Article  PubMed  CAS  Google Scholar 

  101. Lavaud S, Canivet E, Mojaher M et al. Change in membrane electronegativity induces heparin sparing for hemodialysis. J Am Soc Nephrol. 2000;11:281A.

    Google Scholar 

  102. Arkouche W, Delawari E, Renaux JL, Galland R, Pachot M, Traeger J. Benefits of AN69ST membrane on heparin-free dialysis. Nephrol Dial Transplant. 2001;16:A174.

    Google Scholar 

  103. Renaux JL, Thomas M, Crost T, Paris JM. Heparin adsorption on Nephral ST: in vitro/in vivo results. Nephrol Dial Transplant. 2001;16:A165.

    Article  Google Scholar 

  104. De Palma JR. High flux-high fashion? Contemp Dial Nephrol. 1987;8:32.

    Google Scholar 

  105. McClellan S, Cordova S, Chado D, Martin G, Mishell J. High flux dialysis: results of a one-year clinical study on a large patient population. Contemp Dial Nephrol. 1989;10:24–39.

    Google Scholar 

  106. Pollock P, Lehman JM. Administering a high flux dialysis program. Contemp Dial Nephrol. 1989;10:34–42.

    Google Scholar 

  107. Bower JD, Berman LB, Remmers R et al. What is adequate dialysis? Proc Dial Transplant Forum. 1971;1:61–72.

    CAS  Google Scholar 

  108. Gotch FA. Progress in hemodialysis. Clin Nephrol. 1978;9:144–55.

    PubMed  CAS  Google Scholar 

  109. Cambi V, Arisi L, David S, Bono F, Gardini G. 2-h dialysis: a realistic goal? Contrib Nephrol. 1985;44:40–8.

    PubMed  CAS  Google Scholar 

  110. Collins Ai, Keshaviah PR. Are there limitations to short-ening dialysis treatment? Trans Am Soc Artif Intern Organs. 1988;34:1–5.

    CAS  Google Scholar 

  111. Kjellstrand CM. Short dialysis increases morbidity and mortality. Contrib Nephrol. 1985;44:65–77.

    PubMed  CAS  Google Scholar 

  112. Wizemann V, Kramer W. Short-term dialysis-long-term complications: ten years experience with short-duration renal replacement therapy. Blood Purif. 1987;5:193–201.

    Article  PubMed  CAS  Google Scholar 

  113. Kramer P, Broyer M, Brunner FP et al. Combined report on regular dialysis and transplantation in Europe, XII, 1981. Proc Eur Dial Transplant Assoc. 1983;19:4–59.

    PubMed  CAS  Google Scholar 

  114. Held PJ, Levin NW, Bovbjerg RR, Pauly MV, Diamond LH. Mortality and duration of hemodialysis treatment. J Am Med Assoc. 1991;265:871–5.

    Article  CAS  Google Scholar 

  115. Berger EE, Lowrie EG. Mortality and the length of dialysis. J Am Med Assoc. 1991;265:909–10.

    Article  CAS  Google Scholar 

  116. Shaldon S, Koch KM. Survival and adequacy in long-term hemodialysis. Nephron. 1991;59:353–7.

    Article  PubMed  CAS  Google Scholar 

  117. Levin N, Dumler F, Zasuwa G, Stalla K. Mortality comparison between conventional and high flux dialysis. J Am Soc Nephrol. 1990;1:365.

    Google Scholar 

  118. Collins A, Liao M, Umen A et al. High-efficiency bicarbonate hemodialysis (HEBH) has a lower risk of death than standard acetate dialysis. J Am Soc Nephrol. 1991;2:318 (abstract).

    Google Scholar 

  119. Collins A, Liao M, Umen A et al. Diabetic (DM) hemodialysis (HD) patients (PTS) treated with a high KT/V have a lower risk of death than standard (STD) Kt/V. J Am Soc Nephrol. 1991;2:318 (abstract).

    Google Scholar 

  120. Gotch F, Uehlinger D. Mortality rate in U.S. dialysis patients. Dial Transplant. 1991;20:255–7.

    Google Scholar 

  121. Collins AJ. High-efficiency treatments using conventional equipment. In: Stein IH, editor. Hemodialysis: High-efficiency Treatments. Series: Contemporary Issues in Nephrology, Vol. 27, Churchill Livingstone, 1993:91–104.

    Google Scholar 

  122. Beasley D, Schwartz JH, Brenner BM. Interleukin-1 induces prolonged L-arginine-dependent cyclic guanosine monophosphate and nitrite production in rat vascular smooth muscle cells. J Clin Invest. 1991;87:602.

    Article  PubMed  CAS  Google Scholar 

  123. Gagnon R, Kaye M. Hemodialysis neutropenia and dialyser reuse: role of the cleansing agent. Uremia Invest. 1984; 8:17–23.

    PubMed  CAS  Google Scholar 

  124. Dumler F, Zasuwa G, Levin NW. Effect of dialyzer reprocessing methods on complement activation and hemodialyzerrelated symptoms. Artif Organs. 1987;11:128–31.

    Article  PubMed  CAS  Google Scholar 

  125. Laude-Sharp M, Caroff M, Simard L, Pusineri C, Kazatchkine MD, Haeffner-Cavaillon N. Induction of IL-1 during hemodialysis: transmembrane passage of intact endotoxins (LPS). Kidney Int. 1990;38:1089–94.

    Article  PubMed  CAS  Google Scholar 

  126. Pereira BJG, Shapiro L, King AJ et al. Plasma levels of IL-1β, TNFα and their specific inhibitors in undialyzed chronic renal failure, CAPD and hemodialysis patients. Kidney Int. 1994;45:890–6.

    Article  PubMed  CAS  Google Scholar 

  127. Herbelin A, Urena P, Nguyen AT, Zingraff J, Descamps-Latscha B. Elevated circulating levels of interleukin-6 in patients with chronic renal failure. Kidney Int. 1991;39: 954–60.

    Article  PubMed  CAS  Google Scholar 

  128. Skroeder NR, Jacobson SH, Lins LE, Kjellstrand CM. Biocompatibility of dialysis membranes is of no importance for objective or subjective symptoms during or after haemodialysis. Trans Am Soc Artif Intern Organs. 1990;36: 637–9.

    Google Scholar 

  129. Bergamo Collaborative Dialysis Group. Acute intradialytic well-being: results of a clinical trial comparing polysulfone with cuprophan. Kidney Int. 1991;40:714–19.

    Article  Google Scholar 

  130. Collins DM, Lambert MB, Tannenbaum JS, Oliverio M, Schwab SJ. Tolerance of haemodialysis: a randomised, prospective trial of high-flux versus conventional high-efficiency haemodialysis. J Am Soc Nephrol. 1993;4:148–53.

    PubMed  CAS  Google Scholar 

  131. Locatelli F, Mastrangelo F, Redaelli B et al. and the Italian Cooperative Dialysis Study Group. Effects of different membranes and dialysis technologies on patient treatment tolerance and nutritional parameters. Kidney Int. 1996;50:1293–302.

    Article  PubMed  CAS  Google Scholar 

  132. Locatelli F, Marcelli D, Conte F, Limido A, Malberti F, Spotti D. Morbidity and mortality in ESRD patients on convective or on diffusive extracorporeal treatment. Kidney Int. 1999:55:286–93.

    Article  PubMed  CAS  Google Scholar 

  133. Koda Y, Nishi S, Miyazaki S et al. Switch from conventional to high-flux membrane reduces the risk of carpal tunnel syndrome and mortality of haemodialysis patients. Kidney Int. 1997;52:1096–1101.

    Article  PubMed  CAS  Google Scholar 

  134. Hakim RM, Held PJ, Stannard DC et al. Effect of the dialysis membrane on mortality of chronic haemodialysis patients. Kidney Int. 1996;50:566–70.

    Article  PubMed  CAS  Google Scholar 

  135. Bloembergen WE, Hakim RM, Stannard DC et al. Relationship of dialysis membrane and cause-specific mortality. Am J Kidney Dis. 1999;33:1–10.

    Article  PubMed  CAS  Google Scholar 

  136. Eknoyan G, Levey AS, Beck GJ et al. The Hemodialysis (HEMO) study: rationale for selection of interventions. Semin Dial. 1996;9:21–33.

    Google Scholar 

  137. Locatelli F, Hannedouche T, Jacobson S et al. The effect of membrane permeability on ESRD: design of a prospective randomised trial. J Nephrol. 1999;12:85–8.

    PubMed  CAS  Google Scholar 

  138. Bergstrom J. Why are dialysis patients malnourished? Am J Kidney Dis. 1995;26:229–41.

    Article  PubMed  CAS  Google Scholar 

  139. Ikizler TA, Hakim RM. Nutrition in end-stage renal disease. Kidney Int. 1996;50:343–57.

    Article  PubMed  CAS  Google Scholar 

  140. Gutierrez A, Alvestand A, Wahren J, Bergstrom J. Effect of in vivo contact between blood and dialysis membranes on protein catabolism in humans. Kidney Int. 1990;38:487–94.

    Article  PubMed  CAS  Google Scholar 

  141. Gutierrez A, Alvestrand A, Bergstrom J. Membrane selection and muscle protein catabolism. Kidney Int. 1992;42(Suppl. 38):S86–90.

    Google Scholar 

  142. Ikizler TA, Flakoll PJ, Parker RA, Hakim RA. Amino acid and albumin losses during hemodialysis. Kidney Int. 1994;46:830–7.

    Article  PubMed  CAS  Google Scholar 

  143. Kaplan AA, Halley SE, Lapkin RA, Graeber CW. Dialysate protein losses with bleach processed polysulphone dialyzers. Kidney Int. 1995;47:573–8.

    Article  PubMed  CAS  Google Scholar 

  144. Lim VS, Bier DM, Flanigan MJ, Sum-Ping ST. The effect of hemodialysis on protein metabolism. J Clin Invest. 1993;91: 2429–36.

    Article  PubMed  CAS  Google Scholar 

  145. Fouque D, Peng SC, Kopple JD. Impaired metabolic response to recombinant insulin-like growth factor-1 in dialysis patients. Kidney Int. 1995;47:876–83.

    Article  PubMed  CAS  Google Scholar 

  146. Lindsay RM, Spanner E. A hypothesis: the protein catabolic rate is dependent upon the type and amount of treatment in dialyzed uremic patients. Am J Kidney Dis. 1989;13: 382–9.

    PubMed  CAS  Google Scholar 

  147. Lindsay RM, Spanner E, Heidenheim P, Kortas C, Blake PG. PCR, Kt/V and membrane. Kidney Int. 1993;43(Suppl. 41): S268–73.

    Google Scholar 

  148. Port F. Morbidity and mortality in dialysis patients. Kidney Int. 1994;46:1728–37.

    Article  PubMed  CAS  Google Scholar 

  149. Lowrie E, Lew N. Death risk in haemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis. 1990;15:458–82.

    PubMed  CAS  Google Scholar 

  150. Owen WF, Lowrie EG. C-reactive protein as an outcome predictor for maintenance hemodialysis patients. Kidney Int. 1998;54:627–36.

    Article  PubMed  CAS  Google Scholar 

  151. Kaysen GA. Biological basis of hypoalbuminemia in ESRD. J Am Soc Nephrol. 1998;9:2368–76.

    PubMed  CAS  Google Scholar 

  152. Ross R. Atherosclerosis. An inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  PubMed  CAS  Google Scholar 

  153. Zimmermann J, Herlinger S, Pruy A, Metzger T, Wanner C. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int. 1999;55:648–58.

    Article  PubMed  CAS  Google Scholar 

  154. Ballmen PE, McNurlan MA, Hulter HN, Anderson SE, Garlick PJ, Krapf R. Chronic metabolic acidosis decreases albumin synthesis and induces negative nitrogen balance in humans. J Clin Invest. 1995;95:39–45.

    Article  Google Scholar 

  155. Ikizler TA, Hakim RM. Nutrition in end-stage renal disease. Kidney Int. 1996;50:343–57.

    Article  PubMed  CAS  Google Scholar 

  156. Foley RN, Parfrey PS, Harnett JP, Kent GM, Murray DC, Barre PE. The impact of anemia on cardiomyopathy, morbidity, and mortality in end-stage renal disease. Am J Kidney Dis. 1996;28:53–61.

    Article  PubMed  CAS  Google Scholar 

  157. Locatelli F, Conte F, Marcelli D. The impact of hematocrit levels and erythropoietin treatment on overall and cardiovascular mortality and morbidity — the experience of the Lombardy Dialysis Registry. Nephrol Dial Transplant. 1998;13:1642–4.

    Article  PubMed  CAS  Google Scholar 

  158. London GM, Zins B, Pannier B et al. Vascular changes in hemodialysis patients in response to recombinant human erythropoietin. Kidney Int. 1989;36:878–82.

    Article  PubMed  CAS  Google Scholar 

  159. Mayer G, Horl WH. Cardiovascular effects of increasing hemoglobin in chronic renal failure. Am J Nephrol. 1996:16:263–7.

    Article  PubMed  CAS  Google Scholar 

  160. MacDougall IC, Lewis NP, Saunders MJ et al. Long-term cardiorespiratory effect of amelioration of renal anemia by erythropoietin. Lancet. 1990;335:489–93.

    Article  PubMed  CAS  Google Scholar 

  161. Canadian Erythropoietin Study Group. Association between recombinant human erythropoietin and quality of life and exercise capacity of patients requiring haemodialysis. Br Med J. 1990;300:573–8.

    Article  Google Scholar 

  162. Cannella G, La Canna S, Sandrini M. Reversal of left ventricular hypertrophy following recombinant human erythropoietin treatment of anaemic dialysed uraemic patients. Nephrol Dial Transplant. 1991;6:31–7.

    Article  PubMed  CAS  Google Scholar 

  163. Pascual J, Teruel JL, Moya JL, Liano F, Jimenez-Mena M, Ortuno J. Regression of left ventricular hypertrophy after partial correction of anemia with erythropoietin in patients on haemodialysis. A prospective study. Clin Nephrol. 1991;35:280–7.

    PubMed  CAS  Google Scholar 

  164. Radtke HW, Frei U, Erbes PM, Schoeppe W, Koch KM. Improving anemia by hemodialysis. Effect on serum erythropoietin. Kidney Int. 1980;17:382–7.

    Article  PubMed  CAS  Google Scholar 

  165. Ifudu O, Feldman J, Friedman EA. The intensity of haemodialysis and the response to erythropoietin in patients with end-stage renal disease. N Engl J Med. 1996;334:420–5.

    Article  PubMed  CAS  Google Scholar 

  166. Ifudu O, Uribarri J, Rajwani I et al. Adequacy of dialysis and differences in hematocrit among dialysis facilities. Am J Kidney Dis. 2000;36:1166–74.

    Article  PubMed  CAS  Google Scholar 

  167. Young EW, Woods JW, Segieda GE, Held PJ, Port FK, Bloembergen WE. Predictors of target hematocrit among erythropoitin-treated HD patients. J Am Soc Nephrol. 1997;8:259A.

    Google Scholar 

  168. McClellan WM, Frankenfield DL, Johnson CA, Owen WF, Rocco MV, Wish JB, ESRD Core Indicators Working Group. Hematocrit and erythropoietin dose are associated with dose of dialysis among adult hemodialysis patients: results from the 1998 ESRD Core Indicators Project. J Am Soc Nephrol. 2000;11:287A.

    Google Scholar 

  169. Katzarski KS, Charra B, Luik AJ et al. Fluid state and blood pressure control in patients treated with long and short haemodialysis. Nephrol Dial Transplant. 1999;14:369–75.

    Article  PubMed  CAS  Google Scholar 

  170. Movilli E, Cancarini GC, Zani R, Camerini C, Sandrini M, Maiorca R. Adequacy of dialysis reduces the doses of recombinant erythropoietin independently from the use of biocompatible membranes in haemodialysis patients. Nephrol Dial Transplant. 2000;16:111–14.

    Article  Google Scholar 

  171. Kobayashi H, Ono T, Yamamoto N et al. Removal of high molecular weight substances with large pore size membrane (BK-F). Kidney Dial. 1993;34(Suppl.):154–7.

    Google Scholar 

  172. Villaverde M, Pérez-Garcia R, Verde E et al. La polisulfona de alta permeabilidad mejora la respuesta de la anemia a la eritropoyetina en hemodialisis. Nefrologia. 1999;19:161–7.

    Google Scholar 

  173. Kawano Y, Takaue Y, Kuroda Y, Minkuchi J, Kawashima S. Effect on alleviation of renal anemia by hemodialysis using the high-flux dialyzer (BK-F). Kidney Dial. 1994;200–3.

    Google Scholar 

  174. Locatelli F, Andrulli S, Pecchini F et al. Effect of high-flux dialysis on the anemia of haemodialysis patients. Nephrol Dial Transplant. 2000;15:1399–409.

    Article  PubMed  CAS  Google Scholar 

  175. Maduell F, del Pozo C, Garcia H et al. Change from conventional haemodiafiltration to on-line haemodiafiltration. Nephrol Dial Transplant. 1999;14:1202–7.

    Article  PubMed  CAS  Google Scholar 

  176. Grillo P, Bonforte G, Baragetti I, Scanziani R, Dozio B, Surian M. Haemodiafiltration with substitution of fluid prepared on-line decreases rHuEPO consumption. Nephrol Dial Transplant. 1999;14:A207.

    Google Scholar 

  177. Ward RA, Schmidt B, Hullin J, Hillebrand GF, Samtleben W. A comparison of on-line hemodiafiltration and high flux hemodialysis: a prospective clinical study. J Am Soc Nephrol. 2000;11:2344–50.

    PubMed  CAS  Google Scholar 

  178. Wizemann V, Lotz C, Techert F, Uthoff S. On-line haemodiafiltration versus low-flux haemodialysis. A prospective randomised study. Nephrol Dial Transplant. 2000;15(Suppl. 1): S43–8.

    Article  Google Scholar 

  179. Sitter T, Bergner A, Schiffl H. Dialysate related cytokine induction and response to recombinant human erythropoietin in haemodialysis patients. Nephrol Dial Transplant. 2000;15:1207–11.

    Article  PubMed  CAS  Google Scholar 

  180. McKane WS, Tattersall JE, Farrington K. Preservation of residual renal function in high flux haemodialysis. Nephrol Dial Transplant. 1994;9:1686 (abstract).

    Google Scholar 

  181. Caramelo C, Alcazar R, Gallar P et al. Choice of dialysis membrane does not influence the outcome of residual renal function in haemodialysis patients. Nephrol Dial Transplant. 1994;9:675–7.

    PubMed  CAS  Google Scholar 

  182. Hakim RM, Wingard RL, Husni L, Parker RA, Parker TF. The effect of membrane biocompatibility on plasma β2-microglobulin levels in chronic haemodialysis patients. J Am Soc Nephrol. 1996;7:472–8.

    PubMed  CAS  Google Scholar 

  183. Schiffl H, Hartmann J, Lang S. Biocompatible membranes slow the decline of residual renal function in patients undergoing regular hemodialysis. Nephrology. 1997;3;S1: 415 (abstract).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Locatelli, F., Manzoni, C., Di Filippo, S. (2004). Dialysis techniques: hemodialysis. In: Hörl, W.H., Koch, K.M., Lindsay, R.M., Ronco, C., Winchester, J.F. (eds) Replacement of Renal Function by Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2275-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2275-3_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7012-1

  • Online ISBN: 978-1-4020-2275-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics