Skip to main content

Abstract

This is very important, since on the composition depends the amount of dialytic exchange of electrolytes between blood and dialysate, and thus the possibility to restore adequate body electrolytic concentrations and acid—base equilibrium. Moreover, dialysate composition is a factor strongly affecting cardiovascular stability during treatment. Thus, the choice of dialysate composition is an essential element of dialysis prescription, as well as dialyzer membrane, blood and dialysate flow rates and treatment time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stewart WK, Fleming LW, Manuel MA. Benefits obtained by the use of high sodium dialysate during maintenance hemodialysis. Proc Eur Dial Transplant Assoc. 1972;9: 111–16.

    PubMed  CAS  Google Scholar 

  2. Port FK, Johnson WJ, Klass DW. Prevention of dialysis disequilibrium syndrome by use of high sodium concentration in the dialysate. Kidney Int. 1973;3:327–33.

    Article  PubMed  CAS  Google Scholar 

  3. Locatelli F, Costanzo R, Di Filippo S et al. Controlled sequential ultrafiltration dialysis, iso-osmotic dialysis, isonatric dialysis: pathophysiological and clinical evaluation. Dial Transplant. 1979;8:622–31.

    Google Scholar 

  4. Waugh WH. Utility of expressing serum sodium per unit of water in assessing hyponatremia. Metabolism. 1969;18: 706–12.

    Article  PubMed  CAS  Google Scholar 

  5. Stiller S, Mann H. Ionometry versus flame photometry in dialysis therapy. ESAO Proc. 1985;12:63–9.

    Google Scholar 

  6. Locatelli F, Ponti R, Pedrini L, Di Filippo S. Sodium kinetics and dialysis performances. Contrib Nephrol. 1989;70:260–6.

    PubMed  CAS  Google Scholar 

  7. Gotch FA, Lam MA, Prowitt M, Keen M. Preliminary clinical results with sodium-volume modeling of hemodialysis therapy. Proc Dial Transplant Forum. 1980;10:12–16.

    CAS  Google Scholar 

  8. Di Filippo S, Corti M, Andrulli S, Manzoni C, Locatelli F. Determining the adequacy of sodium balance in hemodialysis using a kinetic model. Blood Purif. 1996;14:431–6.

    Article  PubMed  Google Scholar 

  9. Polashegg HD. Automatic non-invasive intradialytic clearance measurements. Int J Artif Organs. 1993;16:185–91.

    Google Scholar 

  10. Petitclerc T, Goux N, Reynier AL, Benè B. A model for noninvasive estimation of in vivo dialyzer performances and patient ’s conductivity during hemodialysis. Int J Artif Organs. 1993;16:585–91.

    PubMed  CAS  Google Scholar 

  11. Locatelli F, Di Filippo S, Manzoni C, Corti M, Andrulli S, Pontoriero G. Monitoring sodium removal and delivered dialysis by conductivity. Int J Artif Organs. 1995;18:716–21.

    PubMed  CAS  Google Scholar 

  12. Locatelli F, Andrulli S, Di Filippo S et al. Effect of on-line conductivity plasma ultrafiltrate kinetic modeling on cardiovascular stability of hemodialysis patients. Kidney Int. 1998; 53:1052–60.

    Article  PubMed  CAS  Google Scholar 

  13. Acchiardo SR, Hayden AJ. Is Na modeling necessary in high flux dialysis? Trans Am Soc Artif Organs. 1991;37:M135–7.

    CAS  Google Scholar 

  14. Sang GLS, Kovithavongs C, Ulan R, Kjellstrand CM. Sodium ramping in hemodialysis: a study of beneficial and adverse effects. Am J Kidney Dis. 1997;29:669–77.

    Article  PubMed  CAS  Google Scholar 

  15. Montoliu J, Lens XM, Revert L. Potassium-lowering effect of albuterol for hyperkalemia in renal failure. Arch Intern Med. 1987;147:713–17.

    Article  PubMed  CAS  Google Scholar 

  16. Ozuer M, Aksoy A, Dortlemez O, Dortlemez H. Effects of cardioselective (B1) and nonselective (both B1 and B2) adrenergic blockade on serum potassium in patients with chronic renal failure undergoing hemodialysis. Kidney Int. 1984;26:584 (abstract).

    Google Scholar 

  17. Viberti GC. Glucose-induced hyperkalemia: a hazard for diabetics? Lancet. 1978;1:690–1.

    Article  PubMed  CAS  Google Scholar 

  18. Moreno M, Murphy C, Goldsmith C, Moran H. Increase in serum potassium resulting from the administration of hypertonic mannitol and other solutions. J Lab Clin Med. 1969;73:291–8.

    PubMed  CAS  Google Scholar 

  19. De Nicola L, Bellizzi V, Minutolo R et al. Effect of dialysate sodium concentration on interdialytic increase of potassium. J Am Soc Nephrol. 2000;11:2337–43.

    PubMed  Google Scholar 

  20. Papadimitriou M, Zamboulis C, Alexopoulos E et al. Alarming hyperkalemia during captopril administration in patients on regular hemodialysis. Dial Tranplant. 1985;14: 473–5.

    Google Scholar 

  21. Feig PU, Shook A, Sterns RS. Effect of potassium removal during hemodialysis on the plasma potassium concentration. Nephron. 1981;27:25–30.

    Article  PubMed  CAS  Google Scholar 

  22. Cupisti A, Galetta F, Caprioli R et al. Potassium removal increases the QRc interval dispersion during hemodialysis. Nephron. 1999;82:122–6.

    Article  Google Scholar 

  23. Redaelli B, Locatelli F, Limido D et al. Effect of a new model of hemodialysis potassium removal on control of ventricular arrhythmias. Kidney Int. 1996;50:609–17.

    Google Scholar 

  24. Hottelart C, Achard JM, Moriniere P, Zoghbi F, Dieval J, Fournier A. Heparin-induced hyperkalemia in chronic hemodialysis patients: comparision of low molecular weight and unfractionated heparin. Artif Organs. 1998;22:614–17.

    Article  PubMed  CAS  Google Scholar 

  25. Gotch FA, Sargent JA, Keen ML. Hydrogen ion balance in dialysis therapy. Artif Organs. 1982;6:388–95.

    Article  PubMed  CAS  Google Scholar 

  26. Mion CM, Hegstrom RM, Boen ST, Scribner BH. Substitution of sodium acetate for sodium bicarbonate in the bath fluid for hemodialysis. ASAIO Trans. 1965;10:110–13.

    Google Scholar 

  27. Kveim M, Nebaskkew R. Utilization of exogenous acetate during hemodialysis. Trans Am Soc Artif Intern Organs. 1975;21:138.

    PubMed  CAS  Google Scholar 

  28. Graefe U, Milutinovich J, Follette WC, Vizzo JE, Babb AL, Scribner BH. Less dialysis-induced morbidity and vascular instability with bicarbonate in dialysate. Ann Intern Med. 1978;88:332.

    Article  PubMed  CAS  Google Scholar 

  29. Cairns HS, Rediout JM, Peters TJ, Laker MF, Mansell MA. Changes in blood acetaldehyde concentrations during acetate hemodialysis. Nephrol Dial Transplant. 1988;3:637.

    PubMed  CAS  Google Scholar 

  30. Jenkins D, Burton PR, Bennet SE, Baker F, Walls J. The metabolic consequences of the correction of acidosis in uraemia. Nephrol Dial Transplant. 1987;79:1099.

    Google Scholar 

  31. Lowrie EG, Lew NL. Death risk in hemodialysis patients: the predictive value of commonly measured variables and an evaluation of death rate differences between facilities. Am J Kidney Dis. 1990;15:458.

    PubMed  CAS  Google Scholar 

  32. Green J, Kleeman CR. Role of bone regulation of systemic acid-base balance. Kidney Int. 1991;39:9.

    Article  PubMed  CAS  Google Scholar 

  33. Henrich WL, Hunt JM, Nixon JV. Increased ionized calcium and left ventricular contractility during hemodialysis. N Engl J Med. 1984;310:19–23.

    Article  PubMed  CAS  Google Scholar 

  34. Wiegand C, Davin T, Raij L, Kjellstrand C. Life threatening hypokalemia during hemodialysis. ASAIO Trans. 1979;25;416–18.

    CAS  Google Scholar 

  35. Mioni G, Favazza A, Messa P. Acid-base metabolism in short dialysis. In: Cambi V, editor. Short Dialysis. Boston: Martinus Niijhoff, 1987:197.

    Chapter  Google Scholar 

  36. Heineken FG, Brady-Smith M, Haynie J, Van Stone JC. Prescribing dialysate bicarbonate concentrations for hemodialysis patients. Artif Organs. 1988;11:45–50.

    CAS  Google Scholar 

  37. Sargent JA, Gotch FA. Bicarbonate and carbon dioxide transport during hemodialysis. ASAIO J. 1979;2:61–72.

    Google Scholar 

  38. Movilli EL, Zani R, Carli O et al. Correction of metabolic acidosis increases serum albumin concentrations and decreases kinetically evaluated protein intake in hemodialysis patients: a prospective study. Nephrol Dial Transplant. 1998;13:1719–22.

    Article  PubMed  CAS  Google Scholar 

  39. Kirschbaum B. Spurious metabolic acidosis in hemodialysis patients. Am J Kidney Dis. 2000;35:1068–71.

    Article  PubMed  CAS  Google Scholar 

  40. Carney SL, Gillies AH. Effect of an optimum dialysis fluid calcium on calcium mass transfer during maintenance dialysis. Clin Nephrol. 1985;24:28–30.

    PubMed  CAS  Google Scholar 

  41. Van der Merwe WM, Rodger RS, Grant AC et al. Low calcium dialysate and high-dose oral calcitriol in the treatment of secondary hyperparathyroidism in haemodialysis patients. Nephrol Dial Transplant. 1990;5:874–7.

    Article  PubMed  Google Scholar 

  42. Slatopolsky E, Weerts C, Norwood K et al. Long term effects of calcium carbonate and 2.5 mEq/L calcium dialysate on mineral metabolism. Kidney Int. 1989;36:897.

    Article  PubMed  CAS  Google Scholar 

  43. Argiles A, Kerr PG, Canaud B, Flavier JL, Mion C. Calcium kinetics and the long-term effects of lowering dialysate calcium concentration. Kidney Int. 1993;43:630–40.

    Article  PubMed  CAS  Google Scholar 

  44. Fernandez E, Borras M, Pais B, Montoliu J. Low-calcium dialysate stimulates parathormone secretion and its longterm use worsens secondary hyperparathyroidism. J Am Soc Nephrol. 1995;6:132–5.

    PubMed  CAS  Google Scholar 

  45. Fabrizi F, Bacchini G, Di Filippo S, Pontoriero G, Locatelli F. Intradialytic calcium balances with different dialysate calcium levels. Effects on cardiovascular stability and parathyroid function. Nephron. 1996;72:530–5.

    Article  PubMed  CAS  Google Scholar 

  46. Argiles A, Mion CM. Low-calcium dialysate worsens secondary hyperparathyroidism. J Am Soc Nephrol. 1996; 7:635–6.

    PubMed  CAS  Google Scholar 

  47. Maynard JC, Cruz C, Kleerekoper M, Levin NW. Blood pressure response to changes in serum ionized calcium during dialysis. Ann Intern Med. 1986;104:358–61.

    Article  PubMed  CAS  Google Scholar 

  48. Sherman RA, Bialy GB, Gazinsky B, Bernholc AS, Eisinger RP. The effect of dialysate calcium levels on blood pressure during hemodialysis. Am J Kidney Dis. 1986;8:244–7.

    PubMed  CAS  Google Scholar 

  49. Alappan R, Cruz D, Abu-Alfa AK, Mahnensmith R, Perazella MA. Treatment of severe intradialytic hypotension with the addition of high dialysate calcium concentration to midodrine and/or cool dialysate. Am J Kidney Dis. 2001;37:294–9.

    Article  PubMed  CAS  Google Scholar 

  50. van der Sande FM, Cheriex EC, van Kuijk WHM, Leunissen KML. Effect of dialysate calcium concentration on intradialytic blood pressure course in cardiac-compromised patients. Am J Kidney Dis. 1998;32:125–31.

    Article  PubMed  Google Scholar 

  51. van Kuijk WHM, Mulder AW, Peels CH, Harf GH, Leunissen KML. Influence of changes in ionized calcium on cardiovascular reactivity during hemodialysis. Clin Nephrol. 1997:47:190–6.

    PubMed  Google Scholar 

  52. Fellner SK, Lang RM, Neumann A, Spencer KT, Bushinsky DA, Borow KM. Physiological mechanisms for calciuminduced changes in systemic arterial pressure in stable dialysis patients. Hypertension. 1989;13:213–18.

    Article  PubMed  CAS  Google Scholar 

  53. Kyriazis J, Glotsos J, Bilirakis L et al. Dialysate calcium profiling during hemodialysis: use and clinical implications. Kidney Int. 2002;61:276–87.

    Article  PubMed  CAS  Google Scholar 

  54. Nappi SE, Virtanen VS, Saha HHT, Mustonen JT, Pasternack AI. QTc dispersion increases during hemodialysis with low-calcium dialysate. Kidney Int. 2000;57:2117–22.

    Article  PubMed  CAS  Google Scholar 

  55. Coburn JW, Popovtzer MM, Massry SG, Kleeman CR. The physico-chemical state and renal handling of divalent ions in CRF. Arch Intern Med. 1969;124:302–11.

    Article  PubMed  CAS  Google Scholar 

  56. Zoppi F, De Gasperi A, Guagnellini E et al. Measurement of ionized magnesium with AVL 988/4 electrolyte analyzer: preliminary analytical and clinical results. Scand J Clin Lab Invest Suppl. 1996;224;259–74.

    Article  PubMed  CAS  Google Scholar 

  57. Saha H, Harmoinen A, Pietila K, Morsky P, Pasternack A. Measurement of serum ionized versus total levels of magnesium and calcium in hemodialysis patients. Clin Nephrol. 1996;46:326–31.

    PubMed  CAS  Google Scholar 

  58. Pedrozzi NE, Truttmann AC, Faraone R et al. Circulating ionized and total magnesium in end-stage kidney disease. Nephron. 1998;79:288–92.

    Article  PubMed  CAS  Google Scholar 

  59. Massry SG, Coburn JW, Kleeman CR. Evidence for suppression of parathyroid gland activity by hypermagnesemia. J Clin Invest. 1970;49:1619–29.

    Article  PubMed  CAS  Google Scholar 

  60. Meema HE, Oreopoulos DG, Rapoport A. Serum magnesium level and arterial calcification in end-stage renal disease. Kidney Int. 1987;32:388–94.

    Article  PubMed  CAS  Google Scholar 

  61. Cisari C, Gasco P, Calabrese G, Pratesi G, Gonella M. Serum magnesium and nerve conduction velocity in uraemic patients on chronic haemodialysis. Magnesium Res. 1989; 4:267–9.

    Google Scholar 

  62. Gonella M, Ballanti P, Rocca C et al. Improved bone morphology by normalizing serum magnesium in chronically hemodialyzed patients. Miner Electrolyte Metab. 1988; 14:240–5.

    PubMed  CAS  Google Scholar 

  63. Graf H, Kovarik J, Stummvoll HK, Wolf A. Disappearance of uraemic pruritus after lowering dialysate magnesium concentration. Br Med J. 1979;279:1478–9.

    Article  Google Scholar 

  64. Breuer J, Moniz C, Baldwin D, Parson V. The effects of zero magnesium dialysate and magnesium supplements on ionized calcium concentration in patients on regular dialysis treatment. Nephrol Dial Transplant. 1987;12:347–50.

    Google Scholar 

  65. Kelber J, Slatopolsky E, Delmez JA. Acute effects of different concentrations of dialysate magnesium during high eficiency dialysis. Am J Kidney Dis. 1994;42:453–60.

    Google Scholar 

  66. Delmez JA, Kelber J, Norword KY, Giles KS, Slatopolsky E. Magnesium carbonate as a phosphorus binder: a prospective, controlled, crossover study. Kidney Int. 1996;49: 163–7.

    Article  PubMed  CAS  Google Scholar 

  67. Navarro JF, Mora C, Jimenez A, Torres A, Macia M, Garcia J. Relationship between serum magnesium and parathyroid hormone levels in hemodialysis patients. Am J Kidney Dis. 1999;34:43–8.

    Article  PubMed  CAS  Google Scholar 

  68. Navarro JF, Mora C, Garcia J. Serum magnesium and parathyroid hormone levels in dialysis patients. Kidney Int. 2000;57:2654.

    Google Scholar 

  69. Rodriguez VO, Arem R, Adroguè J. Hypoglycemia in dialysis patients. Seminars in Dialysis. 1995;8:95–101.

    Article  Google Scholar 

  70. Whaten RA, Keshaviah P, Hommeyer P, Cadwell K, Comty CM. The metabolic effects of hemodialysis with and without glucose in the dialysate. Am J Clin Nutr. 1978;31: 1870–75.

    Google Scholar 

  71. Jackson MA, Holland MR, Nicholas J et al. Occult hypoglycemia caused by hemodialysis. Clin Nephrol. 1999; 51:242–7.

    PubMed  CAS  Google Scholar 

  72. Ward RA, Wathen RL, Williams TE, Harding GB. Hemodialysate composition and intradialytic metabolic, acid-base and potassium changes. Kidney Int. 1987;32:129–35.

    Article  PubMed  CAS  Google Scholar 

  73. Swamy AP, Cestero RVM, Campbell RG, Freeman RB. Long term effect of dialysate glucose on the lipid levels of maintenance hemodialysis patients. Trans ASAIO. 1976; 21:54–9.

    Google Scholar 

  74. Ramirez G, Butcher DE, Morrison AD. Glucose concentration in the dialysate and lipid abnormalities in chronic hemodialysis patients. Int J Artif Organs. 1987;10:31–6.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Locatelli, F., Di Filippo, S., Manzoni, C. (2004). Hemodialysis fluid composition. In: Hörl, W.H., Koch, K.M., Lindsay, R.M., Ronco, C., Winchester, J.F. (eds) Replacement of Renal Function by Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2275-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2275-3_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7012-1

  • Online ISBN: 978-1-4020-2275-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics