Skip to main content

Membranes for hemodialysis

  • Chapter

Abstract

The initiation of renal replacement therapy in chronic uremia coincides with the evolution and subsequent progression of renal disease. The decision as to the appropriate starting moment for the substitution program is still the subject of much discussion. Although specific biochemical parameters (such as the level of plasma creatinine) have been suggested to guide the decision to begin therapy, each patient must be evaluated on an individual basis; whilst specific guidelines may be helpful, they must be considered in conjunction with a large number of additional factors. Some patients may appear well, but may have high levels of creatinine, while others may have much lower creatinine levels, but nevertheless demonstrate classic signs of the uremic syndrome such as nausea, vomiting, progressive anemia, electrolytic disorders, acid—base disequilibrium or neuropathy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sargent JA. Control of dialysis by a single-pool urea model: the National Cooperative Dialysis Study. Kidney Int. 1983;23(Suppl. 13):519—S25.

    Google Scholar 

  2. Gotch FA, Sargent JA. A mechanistic analysis of the National Cooperative Dialysis Study (NCDS). Kidney Int. 1985;28:526–34.

    Article  PubMed  CAS  Google Scholar 

  3. Lowrie EG, Laird NM, Henry RR. Protocol for the National Cooperative Dialysis Study (NCDS). Kidney Int. 1983;23(Suppl. 13):S11–18.

    Google Scholar 

  4. MacLeod A, Grant A, Donaldson C et al. Effectiveness and efficiency of methods of dialysis therapy for end-stage renal disease: systematic reviews. Health Technol Assess. 1998;2: 1–166.

    PubMed  CAS  Google Scholar 

  5. Mulder M. Basic Principles of Membrane Technology. Dordrecht: Kluwer Academic, 1996:157–209.

    Book  Google Scholar 

  6. Alberti G, Drioli E. Le membrane. La Nuova Italia Scientifica (NIS), Roma, 1995.

    Google Scholar 

  7. Babb AL, Farrell PC, Uvelli DA, Scribner BH. Hemodialyzer evaluation by examination of solute molecular spectra. Trans Am Soc Artif Intern Organs. 1972;18:98–105.

    Article  PubMed  CAS  Google Scholar 

  8. Sargent JA, Gotch FA. Principles and biophysics of dialysis. In: Maher JF, editor. Replacement of Renal Function by Dialysis. Dordrecht: Kluwer, 1989:87–143.

    Chapter  Google Scholar 

  9. Henderson LW. Biophysics of ultrafiltration and hemofiltration. In: Maher JF, editor. Replacement of Renal Function by Dialysis. Dordrecht: Kluwer, 1989:300–26.

    Chapter  Google Scholar 

  10. Fecondini F, Ronco C, Cappelli G et al. Membrane per emodialisi: composizione, struttura e caratteristiche operative. In: Ghezzi PM, Ronco C, editors. Membrane e Filtri per Emodialisi. Milano: Wichtig, 1995:5–69.

    Google Scholar 

  11. Drukker W. Hemodialysis: a historical review. In: Maher JF, editor. Replacement of Renal Function by Dialysis. Dordrecht: Kluwer, 1989:20–86.

    Chapter  Google Scholar 

  12. Graham T. Liquid diffusion applied to analysis. Phil Trans Roy Soc Lond. 1861;151:183.

    Article  Google Scholar 

  13. Abel JJ, Rowntree LC, Turner BB. On the removal of diffusible substances from the circulating blood of living animals by dialysis. J Pharmacol Exp Ther. 1914; 5:275–316.

    CAS  Google Scholar 

  14. Haas G. Versuche der Blutauswaschung am Lebenden mit Hilfe der Dialyse. Klin Wochenschr. 1925;4:13.

    Article  CAS  Google Scholar 

  15. Thalhimer W. Experimental exchange transfusion for reducing azotemia. Use of the artificial kidney for this purpose. Proc Soc Exp Biol Med. 1937;37:641–3.

    Google Scholar 

  16. Kolff WJ, Berk HTJ. De kunstmatige nier: een dialysator met groot oppervlak. Ned Tijdschr Geneeskd. 1943;87: 1684.

    Google Scholar 

  17. Alwall N. On the artificial kidney. I — Apparatus for dialysis of blood in vivo. Acta Med Scand. 1947;128:317–25.

    Article  PubMed  CAS  Google Scholar 

  18. Alwall N, Norviit L. On the artificial kidney. II — The effectivity of the apparatus. Acta Med Scand. 1947; 196:250.

    Google Scholar 

  19. Stewart RD, Cerny JC, Mahon HI. The capillary kidney. Preliminary report. Univ Michigan Med Center J. 1964;30:116–18.

    CAS  Google Scholar 

  20. Bowry SK, Rintelen TH. A cellulosic hemodialysis membrane with minimized complement activation. ASAIO J. 1998;44:M579–83.

    Article  PubMed  CAS  Google Scholar 

  21. Ronco C, La Greca G, editors. Vitamin-E-bonded Membrane: A Further Step in Dialysis Optimisation. Contrib Nephrol. Basel, Karger, 1999:127.

    Google Scholar 

  22. Babb AL, Popovich RP, Christopher TJ, Scribner BH. The genesis of the square meter hour hypothesis. Trans Am Soc Artif Intern Organs. 1971;17:91–6.

    Google Scholar 

  23. Atti M. Le membrane per dialisi: il Poliacrilonitrile. In: Di Paolo N, Buoncristiani U, editors. Tecniche Nefrologiche e Dialitiche ′91. Milano: Wichtig, 1991:25–68.

    Google Scholar 

  24. Tielemans C, Madhoun P, Lenaers M et al. Anaphylactoid reactions during hemodialysis on AN69 membranes in patients receiving ACE inhibitors. Kidney Int. 1990;38: 982–4.

    Article  PubMed  CAS  Google Scholar 

  25. Verresen L, Waer M, Vanrenterghem Y, Michielsen P. Angiotensin-converting-enzyme inhibitors and anaphylactoid reactions to high-flux membrane dialysis. Lancet. 1990;336:1360–2.

    Article  PubMed  CAS  Google Scholar 

  26. Parnes L, Shapiro B. Anaphylactoid reactions in hemodialysis patients treated with the AN69 dialyzer. Kidney Int. 1991;40:1148–52.

    Article  PubMed  CAS  Google Scholar 

  27. Mazuecos A, Montoyo C, Andres A et al. Absence of anaphylactoid reactions with the combined use of ACE inhibitors and AN69 hemodialysis membranes. Nephron. 1991;59:519.

    Article  PubMed  CAS  Google Scholar 

  28. Teruel JL, Pascual J, Serrano P, Ortuno J. ACE inhibitors and AN69 membranes: absence of anaphylactoid reactions in haemodiafiltration process. Nephrol Dial Transplant. 1992;7:275.

    PubMed  CAS  Google Scholar 

  29. Lacour F, Maheut H. AN 69 membrane and conversion enzyme inhibitors: prevention of anaphylactic shock by alkaline rinsing? Nephrologie. 1992;13:135–6.

    PubMed  CAS  Google Scholar 

  30. Renaux JL, Thomas M, Crost T et al. Activation of the kallikrein-kinin system in hemodialysis: role of membrane electronegativity, blood dilution, and pH. Kidney Int. 1999;55:1097–103.

    Article  PubMed  CAS  Google Scholar 

  31. Ronco C, Bowry S. Nanoscale modulation of the pore dimensions, size distribution and structure of a new polysulfone-based high-flux dialysis membrane. Int J Artif Organs. 2001;24:726–35.

    PubMed  CAS  Google Scholar 

  32. Bowry SK, Ronco C. Surface topography and surface elemental composition analysis of Helixone, a new high-flux polysulfone dialysis membrane. Int J Artif Organs. 2001;24:757–64.

    PubMed  CAS  Google Scholar 

  33. Ronco C, editor. Polymethylmethacrylate. A flexible membrane for a tailored dialysis. Contrib Nephrol. Basel, Karger, 1999:127.

    Google Scholar 

  34. Poothullil J, Shimizu A, Day RP. Anaphylaxis from the product(s) of ethylene oxide gas. Ann Intern Med. 1975;82:58–62.

    Article  PubMed  CAS  Google Scholar 

  35. Marshall C, Shimizu A, Smith EKM. Ethylene oxide allergy in a dialysis center: prevalence in hemodialysis and peritoneal dialysis population. Clin Nephrol. 1984;21:346–9.

    PubMed  CAS  Google Scholar 

  36. Grammer LC, Roberts M, Nicholls AJ et al. IgE against ethylene oxide-altered human serum albumin in patients who have had acute dialysis reactions. J Allergy Clin Immunol. 1984;74:544–6.

    Article  PubMed  CAS  Google Scholar 

  37. Rockel A, Thiel C, Abdelhamid S et al. Three cases of hemodialysis-associated hypersensitivity reactions. Int J Artif Organs. 1985;8:179–80.

    PubMed  CAS  Google Scholar 

  38. Pearson F, Bruszer G, Lee W et al. Ethylene oxide sensitivity in hemodialysis patients. Artif Organs. 1987;11:100–3.

    Article  PubMed  CAS  Google Scholar 

  39. Ansorge W, Pelger M, Dietrich W, Baurmeister U. Ethylene oxide in dialyzer rinsing fluid: effect of rinsing technique, dialyzer storage time, and potting compound. Artif Organs. 1987;11:118–22.

    Article  PubMed  CAS  Google Scholar 

  40. Lemke HD. Mediation of hypersensitivity reactions during hemodialysis by IgE antibodies against ethylene oxide. Artif Organs. 1987;11:104–10.

    Article  PubMed  CAS  Google Scholar 

  41. Bommer J, Ritz E. Ethylene oxide (ETO) as a major cause of anaphylactoid reactions in dialysis (a review). Artif Organs. 1987;11:111–17.

    Article  PubMed  CAS  Google Scholar 

  42. Rollino C, Goitre M, Piccoli G et al. What is the role of sensitization in uremic pruritus? Nephron. 1991;57:319–22.

    Article  PubMed  CAS  Google Scholar 

  43. Grammer LC. Hypersensitivity. Nephrol Dial Transplant. 1994;9(Suppl. 2):29–35.

    PubMed  Google Scholar 

  44. Lemke HD. Hypersensitivity reactions during haemodialysis: the choice of methods and assays. Nephrol Dial Transplant. 1994;9(Suppl. 2):120–5.

    PubMed  Google Scholar 

  45. Kraske GK, Shinaberger JH, Klaustermeyer WB. Severe hypersensitivity reaction during hemodialysis. Ann Allergy Asthma Immunol. 1997;78:217–20.

    Article  PubMed  CAS  Google Scholar 

  46. Purello D’Ambrosio F, Savica V, Gangemi S et al. Ethylene oxide allergy in dialysis patients. Nephrol Dial Transplant. 1997;12:1461–3.

    Article  PubMed  Google Scholar 

  47. Takesawa S, Ohmi S, Konno Y et al. Varying methods of sterilisation, and their effects on the structure and permeability of dialysis membranes. Nephrol Dial Transplant. 1987;1:254–7.

    PubMed  CAS  Google Scholar 

  48. Inagaki H, Hamazaki T, Kuroda H, Yano S. Foreign particles contaminating hemodialyzers and methods of removing them by rinsing. Nephron. 1987;46:343–6.

    Article  PubMed  CAS  Google Scholar 

  49. Caiazza S, Giangrande A, Cantu P et al. Particle migration from haemodialysis circuit: electron microscopy and microprobe analysis. Biomater Artif Cells Artif Organs. 1988;16:721–9.

    PubMed  CAS  Google Scholar 

  50. Hoenich NA, Thompson J, Varini E et al. Particle spallation and plasticiser (DEHP) release from extracorporeal circuit tubing materials. Int J Artif Organs. 1990;13:55–62.

    PubMed  CAS  Google Scholar 

  51. Hoenich NA, Thompson J, McCabe J, Appleton DR. Particle release from haemodialysers. Int J Artif Organs. 1990;13:803–8.

    PubMed  CAS  Google Scholar 

  52. Ghezzi PM, Ronco C, Delfino PG. Membrane e Filtri per Emodialisi. Milano: Wichtig, 1997:Vol. IV.

    Google Scholar 

  53. Ronco C, Ghezzi PM, Hoenich NA, Delfino PG. Membranes and Filters for Hemodialysis 2001. Basel: Karger, 2000 (CD-ROM).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ronco, C., Ghezzi, P.M., Bowry, S.K. (2004). Membranes for hemodialysis. In: Hörl, W.H., Koch, K.M., Lindsay, R.M., Ronco, C., Winchester, J.F. (eds) Replacement of Renal Function by Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2275-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2275-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7012-1

  • Online ISBN: 978-1-4020-2275-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics