Zooplankton in Lake Atnsjøen 1985–1997

  • Gunnar Halvorsen
  • Børre K. Dervo
  • Katarzyna Papinska
Part of the Developments in Hydrobiology book series (DIHY, volume 177)

Abstract

The aim of this paper is to study long-term changes in the zooplankton of a subalpine locality unaffected by direct anthropogenic disturbances. The material has been collected during the period 1985-1997; since 1988 a standardised sampling program has been followed, with five sampling dates during the ice free period (June—October) at three fixed stations. Altogether 17 species of Rotatoria, 9 species of Copepoda and 11 species of Cladocera were recorded. Of these 10 species of Rotatoria, two species of Copepoda and five species of Cladocera occur regularly in the plankton. Polyarthra vulgaris dominate among the rotifers together with Kellicottia longispina and Conochilus unicornis. The crustacean community is dominated by the copepod Cyclops scutifer, and the cladocerans Bosmina longispina, Holopedium gibberum and Daphnia longispina. The cladocerans Bythotrephes longimanus, Polyphemus pediculus, and the copepods Arctodiaptomus laticeps and Heterocope saliens all occur regularly, but at low densities. The zooplankton density is low in May/June and peaks in August and September, but the timing of maximum densities varies from year to year. By numbers, the rotifers strongly dominate with densities 10-15 times higher than the crustaceans. The annual maximum density (rotifers plus crustaceans) ranged from 50 ind. 1-1 (1985, 1988) to 450 ind. 1-1 (1995). Mean density is about 140-150 ind. 1-1. By biomass (dry weight), the cladocerans constitute 60%, while the copepods and rotifers constitute 30% and 10% of the zooplankton, respectively. The annual maximum has varied between 70 and 260 µg dw 1-1, with 170 µg dw 1-1 as the mean level. C. scutifer usually has a one-year lifecycle without diapause, but a small fraction of the population has a two-year lifecycle. The life cycle in 1989 and 1990 differed strongly from the other years. The life cycles of B. longispina, D. longispina and possibly also H. gibberum and A. laticeps, indicate two generations during the summer. H. gibberum and H. saliens pass the winter as resting eggs. The other crustacean species, except C. scutifer, pass the winter mainly as resting eggs, but all have a small winter population in the water mass. C. scutifer is the only species without resting eggs. The vertical distribution normally shows highest density between 5 and 10 m depth. However, during some periods maximum density is observed close to the surface, while at other times it is seen deep in the hypolimnion. The vertical distribution is most pronounced when the thermocline is sharp, and less pronounced during the full circulation in autumn. The vertical migration may also be pronounced, especially in B. longispina, with high density near the surface during the night. The vertical migration is less pronounced among the rotifers and copepods. The degree of vertical migration varies with temperature and food conditions. There is little variation from year to year in species composition, but large variation in species dominance, seasonal development, population density, and vertical and horizontal distribution during the sampling period. Variations in temperature, food condition, predation, and water through-flow are possible causes for the observed differences between the years. Input of allochthonous material is especially important. However, no clear correlation have been found between the development of the plankton community and these environmental factors. Hence, these interactions are complex and multifactorial.

Key words

Lake zooplankton Rotatoria Copepoda Cladocera life cycles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aagaard, K. & D. Dolmen (eds) 1996. Limnofauna Norvegica. Katalog over norsk ferskvannsfauna. Tapir forlag, Trondheim, 310 pp. (in Norwegian with English abstract).Google Scholar
  2. Aagaard, K., J. O. Solem, T. Bongard, S.-E. Sloreid, A. Bretten & O. Hanssen, 1997. Bunndyrundersøkelser i Atna og Atnsjøøen 19861995. In Fagerlund, K. H. & ø. Grundt (eds), Samlerapport for Atnavassdraget i peroden 1985–1995. FORSKREF Rapport nr. 02–1997: 169–204 (in Norwegian).Google Scholar
  3. Allan, J. D., 1977. An analysis of seasonal dynamics of a mixed population of Daphnia, and the associated cladoceran community. Freshwater Biology 7: 505–512.CrossRefGoogle Scholar
  4. Antonsson, Ú., 1992. The structure and function of zooplankton in Thingvallavatn, Iceland. Oikos 64: 188–221.CrossRefGoogle Scholar
  5. Axelson, J., 1961. On the dimorphism in Cyclops scutifer (Sars) and the cyclomorphosis in Daphnia galeata (Sars). Report, Institute Freshwater Research, Drottningholm 42: 169–182.Google Scholar
  6. Beaver, J. R. & T. L. Crisman, 1990. Use of microzooplankton as an early indication of advancing cultural eutrophication. Verhandlungen der internationale Vereinigung für theoretische und angewandte Limnologie 24: 532–537.Google Scholar
  7. Blakar, I. A., 1994. Vannkvalitet. In Braadland, T. & J. øvstedal Ar srapport FORSKREF Forskning- og referansevassdrag. Arsrapport 1993. FORSKREF Rapport 1–1994: 33–39 (in Norwegian).Google Scholar
  8. Blakar, I. A., 1994. Vannkvalitet. In Braadland, T. & J. øvstedal Ar srapport FORSKREF Forskning- og referansevassdrag. Arsrapport 1993. FORSKREF Rapport 1–1994: 33–39 (in Norwegian).Google Scholar
  9. Blakar, I. A. & O. J. Jacobsen, 1979. Zooplankton distribution and abundance in seven lakes from Jotunheimen, a Norwegian high mountain area. Archiv für Hydrobiologie 85: 277–290.Google Scholar
  10. Bogen, J., 2004. Erosion and sediment yield in the Atna river basin. Hydrobiologia 521: 35–47.CrossRefGoogle Scholar
  11. Bottrell, H. H., A. Duncan, Z. M Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.Google Scholar
  12. Brabrand, A. (ed.), 1998. Virkninger av flom på vannlevende organismer. Hydra-rapport nr. Mi02: 1–100 (in Norwegian with English summary).Google Scholar
  13. Brettum, P. & G. Halvorsen, 2004. The phytoplankton of Lake Atnsjøen, Norway - a longterm investigation. Hydrobiologia 521: 141–147.CrossRefGoogle Scholar
  14. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.PubMedCrossRefGoogle Scholar
  15. DeMott, W. R., 1982. Feeding selectivities and relative ingestion rates in Daphnia and Bosmina. Limnology and Oceanography 27: 518–527.CrossRefGoogle Scholar
  16. Dervo, B. K., 1988. Interactions between zooplankton and fish in the deep oligotrophic lake Atnsjøen, SE Norway. MScthesis, University of Oslo, 112 pp.Google Scholar
  17. Dervo, B. K. & G. Halvorsen, 1989. Forsknings og referansevassdrag Atna. Arts-sammensetning og populasjonsdynamikk hos plankton i Atnsjøøen. MVU-rapport nr. B55: 1–41 (in Norwegian).Google Scholar
  18. Dervo, B. K., O. Hegge, D. O. Hessen & J. Skurdal, 1991. Diet food selection of pelagic Arctic charr, Salvelinus alpinus L, and brown trout, Salmo trutta L, in lake Atnsjøen, SE Norway. Journal of Fish Biology 38: 194–209.CrossRefGoogle Scholar
  19. Eie, J. A., 1982. Atnavassdraget, hydrografi og evertebrater - en oversikt. Kontaktutvalget for Vassdragsreguleringer, University of Oslo, Rapport 41: 1–76 (in Norwegian).Google Scholar
  20. Elgmork, K., 1985. Prolonged life cycles in the planktonic copepod Cyclops scutifer Sars. Verhandlungen der internationale Vereinigung für theoretische und angewandte Limnologie 22: 3154–3158.Google Scholar
  21. Elgmork, K. & J. A. Eie, 1989. Two- and three-year life cycles in the planktonic copepod Cyclops scutifer in two high mountain lakes. Holarctic Ecology 12: 60–69.Google Scholar
  22. Fagernæs, K. E., 1989. Artssammensetning og sesongvariasjoner i fytoplanktonet i Atnsjø en 1987. MVU-rapport (without number), 16 pp. (in Norwegian).Google Scholar
  23. Ferrari, L., A. Farabegoli & R. Mazzoni, 1989. Abundance and diversity of planktonic rotifers in the Po River. Hydrobiologia 186: 201–208.CrossRefGoogle Scholar
  24. Flössner, D., 1972. Krebstiere, Crustacea, Kiemen- und Blattfüsser, Branchiopoda, Fischläuse, Branchiura. Tierwelt Deutschl. 60: 1501.Google Scholar
  25. Flössner, D., 2002. Die Haplopoda und Cladocera Mitteleuropas. Backhuys Publishers, Leiden, 428 pp.Google Scholar
  26. Gliwicz, Z. M., 1969. Studies on the feeding of pelagic zooplankton in lakes with varying trophy. Ekologia Polska A 17: 663–708.Google Scholar
  27. Gliwicz, Z. M., 1974. Trophic status of freshwater zooplankton species. Wlad. Ekologie 20: 197–206.Google Scholar
  28. Halvorsen, G., 1973. Crustacea from the high mountain area Hardangervidda, South Norway. Rapport Høyfjellsøkologisk Forskningsstasjon, Finse 2: 1–17.Google Scholar
  29. Halvorsen, G., 1981. Hydrografi og evertebrater i Lyngdalsvassdraget i 1978 og 1980. Kontaktutvalget vor Vassdragsreger, University of Oslo, Rapport 26: 1–89.Google Scholar
  30. Halvorsen, G., 2004. Some physical and chemical characteristics of Lake Atnsjøen. Hydrobiologia 521: 129–140.CrossRefGoogle Scholar
  31. Halvorsen, G. & K. Elgmork, 1976. Vertical distribution and seasonal cycle of Cyclops scutifer Sars Crustacea, Copepoda in two oligotrophic lakes in southern Norway. Norwegian Journal of Zonlov 74: 143–160Google Scholar
  32. Halvorsen, G., S.-E. Sloreid & B. Walseng, 1996. Dokka-deltaet - ferskvannsbiologiske konsekvenser av utbyggingen. Dokkavassdraget NINA Oppdragsmelding 437: 1–101 (in Norwegian with English summary).Google Scholar
  33. Hegge, O., 1988. Habitat utilization and life history of sympatric Arctic char Salvelinus alpinus L. and brown trout Salmo trutta L. in lake Atnsjø. Biological Institute, University of Oslo, 61 pp.Google Scholar
  34. Hegge, O., B. K. Dervo & J. Skurdal, 1991. Age and size at sexual maturity of heavily exploited Arctic charr and brown trout in Lake Atnsjøen, southeastern Norway. Transaction of the American Fisheries Society 120: 141–149.CrossRefGoogle Scholar
  35. Hessen, D. O., 1985. Filtering structures and particle size selection in coexisting Cladocera. Oecologia (Berlin) 66: 368–372.CrossRefGoogle Scholar
  36. Hessen, D. O., 1988. Carbon metabolism in the pelagial of the humic lake. Dr. Philos. thesis, University of Oslo, 296 pp.Google Scholar
  37. Hesthagen, T., T. Forseth, O. Hegge, R. Saksgård & J. Skurdal, 2004. Annual variability in the life-history characteristics of brown trout (Salmo trutta) and Arctic charr (Salvelinus alpinus) in a subalpine Norwegian lake Hydrobiologia 521. 177–186CrossRefGoogle Scholar
  38. Hesthagen, T., O. Hegge, B. K. Dervo & J. Skurdal, 1989. Forsknings- og referansevassdrag Atna. Utbredelse, fordeling og interaksjoner hos fiskebestandene i Atnsjøen og Atna. MVUrapport nr. B60: 1–59 (in Norwegian).Google Scholar
  39. Holtan, N. H., P. Brettum, B. Hals & G. Holtan, 1982. Glåma i Hedmark. Delrapport om innsjøer. Undersøkelser i tidsrommet 1978–1980. NIVA rapport 0–78045: 1–96 (in Norweian).Google Scholar
  40. Jensen, J. W., 1981. The annual cycle and production of Arctodiaptomus laticeps (Sars) in Lake Målsjøen, Norway. Journal of Plankton Research 3: 283–289.CrossRefGoogle Scholar
  41. Johnsen, G. H. & D. J. Jakobsen, 1987. Effect of food limitation on vertical migration in Daphnia longispina. Limnology and Oceanography 32: 873–880.CrossRefGoogle Scholar
  42. Jónasson, P. M., H. Adalsteinsson & G. S. Jónsson, 1992. Production and nutrition supply of phytoplankton in subarctic, dimictic Thingvallavatn, Iceland. Oikos 64: 162–187.CrossRefGoogle Scholar
  43. Kersting, K., 1983. Direct determination of the “treshold food concentration” for Daphnia magna. Archiv für Hydrobiologie 96: 510–514.Google Scholar
  44. Kiefer, F., 1973. Ruderfusskrebse (Copepoden). Kosmos-Verlag, Franckh, Stuttgart, 99 pp.Google Scholar
  45. Kiefer, F., 1978. Freilebende Copepoda. In Elster, H. J. & W. Ohle (eds), Das Zooplankton der Binnengewässer 26: 1–343.Google Scholar
  46. Kjellberg, G., 1999. Tiltaksorientert overväking av Mjøsa med tilløpselverArsrapport for 1998. NIVA rapport 4022–99 (in Norwegian).Google Scholar
  47. Koksvik, J. I. & H. Reinertsen, 1995. Planktonundersøkelser i Jonsvatnet i Trondheim. En oppsummering av utviklingen i perioden 1977–1994, med spesiell omtale av forholdene i 1994. Vitenskapsmuseet, Rapport Zoologisk Serie 1995–3: 1–27 (in Norwegian).Google Scholar
  48. Lair, N., 1991. Comparative grazing activities of the rotifer and crustacean communities in a eutrophic lake. Verhandlungen der internationale Vereinigung für theoretische und angewandte Limnologie 24: 924–927.Google Scholar
  49. Lampert, W., 1977. Studies on the carbon balance of Daphnia pulex De Geer as related to environmental conditions. Archiv für Hydrobiologie (Supplement 48): 361–368.Google Scholar
  50. Lampert, W., 1978. A field study on the dependence of the fecundity of Daphnia species on food concentration. Oecologia (Berlin) 36: 363–369.CrossRefGoogle Scholar
  51. Langeland, A., 1978. Effects of fish predation on the zooplankton of ten Norwegian lakes. Verhandlungen der internationale Vereinigung für theoretische und angewandte Limnologie 20: 2065–2069.Google Scholar
  52. Langeland, A. and H. Reinertsen, 1982. Interactions between phytoplankton and zooplankton in a fertilized lake. Holarctic Ecology 5: 253–272.Google Scholar
  53. Langeland, A. & S. Rognerud, 1974. Statistical analyses used in the comparison of three methods of freshwater zooplankton sampling. Archiv für Hydrobiologie 73: 403–410.Google Scholar
  54. Larsson, P., 1978. The life cycle dynamics and production of zooplankton in øvre Heimdalsvatn. Holarctic Ecology 1: 162–218.Google Scholar
  55. Larsson, P., J. E. Brittain, L. Lien & A. Lillehammer, 1978. The lake ecosystem of øvre Heimdalsvatn. Holarctic Ecology 1: 304–320.Google Scholar
  56. Matzow, D., 1974. Inventering i Atnavassdraget sommeren 1974. Mimeographed report, Landsplan for verneveridge vassdrag, Ministry of Environment. Oslo. 17 pp.Google Scholar
  57. Moore, J. W., 1977. Some factors influencing the density of subarctic populations of Bosmina longirostris, Holopedium gibberum, Codonella cratera and Ceratium hirundinella. Hydrobiologia 56: 199–207.CrossRefGoogle Scholar
  58. Muck, P. & W. Lampert, 1984. An experimental study on the importance of food conditions for the relative abundance of calanoid copepods and cladocerans. Archiv für Hydrobiologie (Suppl.) 66: 157–179.Google Scholar
  59. Nilssen, J. P., 1978. On the evolution of life histories of limnic cyclopoid copepods. Memorie dell Istituto italiano di Idrobiologia 36: 193–214.Google Scholar
  60. Nilsson, N. A. & B. Pejler, 1973. On the relation between fish fauna and zooplankton composition in north Swedish lakes. Report, Institute of Freshwater Research. Drottningholm 53: 51–77.Google Scholar
  61. Nøst, T. & J. W. Jensen, 1997. Crustacean plankton in Høylandet. Hydrobiologia 348: 95–111.CrossRefGoogle Scholar
  62. Nordli, P. Ø. & A. A. Grimenes, 2004. The climate of Atndalen. Hydrobiologia 521: 7–20.CrossRefGoogle Scholar
  63. Østrem, G., N. Flakstad & J. M. Santha, 1984. Dybdekart over norske innsjøer. NVE-Vassdragsdirektoratet, Hydrologisk avdeling. Meddelelse nr. 48: 1–128 (in Norwegian).Google Scholar
  64. Oftedahl, C., 1950. Petrology and geology of the Rondane area. Norsk geologisk tidsskrift 28: 199–225.Google Scholar
  65. Pace, M. L., S. E. G. Findlay & D. Lints, 1992. Zooplankton in advective environments: the Hudson River community and a comparative analyses. Canadian Journal of Fisheries and Aquatic Sciences 49: 1060–1069CrossRefGoogle Scholar
  66. Patalas, K., 1971. Crustacean plankton communities in forty-five lakes in the Experimental Lakes Area, northwestern Ontario. Journal of the Fisheries Research Board of Canada 28: 231–244.CrossRefGoogle Scholar
  67. Pontin, R. M., 1978. A key to British freshwater planktonic Rotifera. Freshwater Biological Association. Scientific Publication 38: 1178.Google Scholar
  68. Ruttner-Kolisko, A., 1972. Rotatoria. In Elster, H.-J. & W. Ohle (eds), Das Zooplankton der Gewässer, I. Teil, III. Die Binnengewässer 26: 99–234.Google Scholar
  69. Rylov, W. M., 1948. Freshwater Cyclopoida. Fauna USSR, Crustacea 3 3. Israel Program for Scientific Translations, Jerusalem 1963: 314 pp.Google Scholar
  70. Saksgärd, R. & T. Hesthagen, 2004. A 14-year study of habitat use and diet of brown trout (Salmo trutta) and Arctic charr (Salvelinus alpinus) in Lake Atnsjøen, a subalpine Norwegian lake. Hvdrobiologia 521: 187–199.CrossRefGoogle Scholar
  71. Sars, G. O., 1903. An Account of the Crustacea of Norway. IV Copenoda. Calanoida. Bergen, 171 rp.Google Scholar
  72. Sars, G. O., 1903. An Account of the Crustacea of Norway. IV Copenoda. Calanoida. Bergen, 171 rp.Google Scholar
  73. Sars, G. O., 1918. An Account of the Crustacea of Norway. VI Copepoda, Cyclopoida. Bergen, 225 pp.Google Scholar
  74. Schartau, A. K. L., 1985. Vertikalfordeling og vertikalmigrasjon hos flercellet zooplankton i Skjennungen, Oslo kommune, sett i relasjon til konkurranse og føde. MSc-thesis, University of Oslo, 144 pp. (in Norwegian)Google Scholar
  75. Shiel, R. J. & K. F. Walker, 1984. Zooplankton of regulated rivers: The Murray—Darling river system, Australia. In Lillehammer, A. & S. J. Saltveit (eds), Regulated Rivers. Universitetsforlaget, Oslo: 263–270.Google Scholar
  76. Shiel, R. J., K. F. Walker & W. D. Williams, 1982. Plankton of the Lower Murray, South Australia. Australian Journal of Marine and Freshwater Research 33: 301–327.CrossRefGoogle Scholar
  77. Skov, A., 1985. Livssyklus og tetthetsvariasjoner til zooplankton i et skogstjern, Store Finnetjern, Gjerstad, Aust-Agder 1980–1983. MSc-thesis, University of Oslo, 131 pp. (in Norwegian).Google Scholar
  78. Stich, H. B. & W. Lampert, 1984. Growth and reproduction of migrating and nonmigrating Daphnia species under simulated food and temperature conditions of diurnal vertical migration. Oecologia (Berlin) 61: 192–196.CrossRefGoogle Scholar
  79. Strøm, K. M., 1943. Die Farbe der Gewässer und die LundqvistSkala. Archiv für Hydrobiologie 22: 26–30.Google Scholar
  80. Tangen, K. & P. Brettum, 1978. Phytoplankton and pelagic primary production in Ø vre Heimdalsvatn. Holarctic Ecology 1: 128 147.Google Scholar
  81. Taube, I. & A. Nauwerk 1967. Zur Populationsdynamik von Cyclops scutifer Sars. Report, Institute of Freshwater Research, Drottningholm 47: 76–86.Google Scholar
  82. Ter Braak, C. J. F., 1996. Unimodal models to relate species to environment. DLO-Agricultural Mathematics Group, Wageningen. 266 pp.Google Scholar
  83. Thorpe, J. H., A. R. Black, K. H. Haag & J. D. Wehr, 1994. Zooplankton assemblages in the Ohio River: seasonal, tributary, and navigation dam effects. Canadian Journal of Fisheries and Aquatic Sciences 51: 1634–1643.CrossRefGoogle Scholar
  84. Tvede, A. M. 2004. Hydrology of Lake Atnsjøen and River Atna. Hydrobiologia 521: 21–34.CrossRefGoogle Scholar
  85. Vijverberg, J. 1980. Effect of temperature in laboratory studies on development and growth of Cladocera and Copepoda from Tjeukemeer, The Netherlands. Freshwater Biology 10: 317–340.CrossRefGoogle Scholar
  86. Wetzel, R. G., 2001. Limnology. Lake and River Ecosystems, 3rd edn. Academic Press, San Diego, CA, 1006 pp.Google Scholar
  87. Zaret, T. M. & W. C. Kerfoot, 1975. Fish predation on Bosmina longirostris: body size selection versus visibility selection. Ecology 56: 232–237.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2004

Authors and Affiliations

  • Gunnar Halvorsen
    • 1
  • Børre K. Dervo
    • 2
  • Katarzyna Papinska
    • 3
  1. 1.Norwegian Institute for Nature Research (NINA)SentrumOsloNorway
  2. 2.FakkelgårdenNINALillehammerNorway
  3. 3.Dept. of HydrobiologyUniversity of WarsawBanacha 2Poland

Personalised recommendations