Skip to main content

Huge Magnetoresistance in Quantum Magnetic Nanocontacts

  • Conference paper
  • 333 Accesses

Part of the book series: NATO Science Series ((NAII,volume 143))

Abstract

The quasiclassical theory of a nanosize point contacts (PC) between two ferromagnets is developed. The maximum available magnetoresistance in PC is calculated for ballistic and diffusive transport at the area of a contact. In the ballistic regime, the magnetoresistance in excess of few hundreds percents is obtained for the iron-group ferromagnets. The regime of quantized conductance through the magnetic nanocontact is considered. It is shown that magnetoresistance is tremendously enhanced at small number of open conductance channels. The quantum spin valve realization is discussed in detail, and recent observations of huge (up to 100’000%) magnetoresistance in the electrodeposited nickel nanocontacts are discussed in the framework of the developed theory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. García, M. Muñoz, and Y.-W. Zhao, Phys. Rev. Lett. 82, 2923 (1999).

    Article  ADS  Google Scholar 

  2. G. Tatara, Y.-W. Zhao, M. Muñoz, and N. García, Phys. Rev. Lett. 83, 2030 (1999).

    Article  ADS  Google Scholar 

  3. N. García, M. Muñoz, and Y.-W. Zhao, Appl. Phys. Lett. 76, 2586 (2000).

    Article  ADS  Google Scholar 

  4. M. A. M. Gijs, G. E. W. Bauer, Adv. Phys. 46, 285 (1997).

    Article  ADS  Google Scholar 

  5. J.-Ph. Ansermet, J. Phys.: Cond. Matt. 10, 6027 (1998).

    Article  ADS  Google Scholar 

  6. N. Garca, M. Munoz, V.V. Osipov et al., J. Magn. Magn. Mater. 240, 92 (2002).

    Article  ADS  Google Scholar 

  7. H.D. Chopra, S.Z. Hua, Phys. Rev. B 66, 020403 (R) (2002).

    Article  ADS  Google Scholar 

  8. H. Wang, H. Cheng, N. Garcia, cond-mat/0207516 (22 July 2002 ).

    Google Scholar 

  9. S.Z. Hua, H.D. Chopra, Phys. Rev. B 67, 060401 (R) (2003).

    Article  ADS  Google Scholar 

  10. J.-E. Wegrowe, T. Wade, X. Hoffer et al., Phys. Rev. B 67, 104418 (2003).

    Article  Google Scholar 

  11. G.G. Cabrera and L.M. Falicov, Phys. Stat. Solidi (b) 61, 539 (1974); 62, 217 (1974).

    Article  Google Scholar 

  12. L. Berger, J. Appl. Phys. 49, 2156 (1978); 69, 1550 (1991).

    Google Scholar 

  13. P.M. Levy, Sh. Zhang, Phys. Rev. Lett. 79, 5110 (1997).

    Article  ADS  Google Scholar 

  14. J.B.A.N. van Hoof et al., Phys. Rev. B 59, 138 (1999).

    Article  Google Scholar 

  15. L.R. Tagirov, B.P. Vodopyanov, K.B. Efetov, Phys. Rev. B 63, 104468 (2001).

    Google Scholar 

  16. L.R. Tagirov, B.P. Vodopyanov, K.B. Efetov, Phys. Rev. B 65, 214419 (2002).

    Article  Google Scholar 

  17. L.R. Tagirov, B.P. Vodopyanov, B.M. Garipov, J. Magn. Magn. Mater. 258–259, 61 (2003).

    Article  ADS  Google Scholar 

  18. P. Bruno, Phys. Rev. Lett. 83, 2425 (1999).

    Article  ADS  Google Scholar 

  19. L.L. Savchenko, A.K. Zvezdin, A.F. Popkov, K.A. Zvezdin, Fiz. Tverd. Tela (St. Petersburg) 43, 1449 (2001)

    Google Scholar 

  20. V.A. Molyneux, V.V. Osipov, E.V. Ponizovskaya, Phys. Rev. B 65, 184425 (2002).

    Google Scholar 

  21. J.M.D. Coey, L. Berger, Y. Labaye, Phys. Rev. B 64, 020407 (2001).

    Google Scholar 

  22. Y. Labaye, L. Berger, J.M.D. Coey, Journ. Appl. Phys. 91, 5341 (2002).

    Article  ADS  Google Scholar 

  23. A. Overhauser, Phys. Rev. 89, 689 (1953).

    Article  ADS  MATH  Google Scholar 

  24. J.F. Gregg, W. Allen, K. Ounadjela et al., Phys. Rev. Lett. 77, 1580 (1996).

    Google Scholar 

  25. M.B. Stearns, J. Appl. Phys. 73, 6396 (1993).

    Article  ADS  Google Scholar 

  26. Yu.V. Sharvin, Zh. Exp. Teor. Fiz. 48, 984 (1965) [Sov. Phys. — JETP 21, 655 (1965)].

    Google Scholar 

  27. L.D. Landau and E.M. Lifshitz, Quantum Mechanics, §25, Butterworth-Heinemann, Oxford, 1995.

    Google Scholar 

  28. A.V. Zaitsev, ZhETF 86, 1742 (1984) [Sov. Phys. — JETP 59, 1015 (1984)].

    Google Scholar 

  29. M. Julliere, Phys. Lett. A 54, 225 (1975).

    Article  Google Scholar 

  30. J.C. Gröbli et al.,Physica B 204, 359 (1995).

    Google Scholar 

  31. R.J. Soulen et al, Science 282, 85 (1998); J. Appl. Phys. 85, 4589 (1999).

    Article  ADS  Google Scholar 

  32. S.K. Upadhyay, A. Palanisami, R.N. Louie and R.A. Buhrman, Phys. Rev. Lett. 81, 3247 (1998).

    Article  ADS  Google Scholar 

  33. N. García, H. Rohrer, I.G. Saveliev, Y.-W. Zhao, Phys. Rev. Lett. 85, 3053 (2000).

    Article  ADS  Google Scholar 

  34. N. García, M. Muños, G.G. Qian, H. Rohrer, I.G. Saveliev, Y.-W. Zhao, Appl. Phys. Lett. 79, 4550 (2001).

    Article  ADS  Google Scholar 

  35. B.J. v. Wees, H. v. Houten, C.W.J. Beenakker et al, Phys. Rev. Lett. 60, 848 (1988).

    Article  ADS  Google Scholar 

  36. D.A. Wharam, T.J. Thornton, R. Newbury et al, J. Phys. C 21, L209 (1988).

    Article  ADS  Google Scholar 

  37. J.L. Costa-Krämer, Phys. Rev. B 55, 4875 (1997).

    Article  ADS  Google Scholar 

  38. H. Oshima, K. Miyano, Appl. Phys. Lett. 73, 1103 (1998).

    Article  Google Scholar 

  39. F. Ott, S. Barberan, J.G. Lunney et al, Phys. Rev. B 58, 4656 (1998).

    Article  ADS  Google Scholar 

  40. T. Ono, Y. Ooka, H. Miyajima, Appl. Phys. Lett. 75, 1622 (1999).

    Article  ADS  Google Scholar 

  41. H. Imamura, N. Kobayashi, S. Takahashi and S. Maekawa, Phys. Rev. Lett. 84, 1003 (2000).

    Article  ADS  Google Scholar 

  42. A.K. Zvezdin, A.F. Popkov, JETP Lett. 71, 209 (2000).

    Article  ADS  Google Scholar 

  43. R. Landauer, IBM J. Res. Dev. 32, 306 (1988); M. Büttiker, IBM J. Res. Dev. 32, 317 (1988).

    Google Scholar 

  44. C. S. Chu, R. S. Sorbello, Phys. Rev. B 40, 5941 (1989).

    Article  ADS  Google Scholar 

  45. P.F. Bagwell, Phys. Rev. B 46, 12573 (1992).

    Article  Google Scholar 

  46. P. García-Mochales, P.A. Serena, N. García, J.L. Costa-Krämer, Phys. Rev. B 53, 10268 (1996).

    Article  ADS  Google Scholar 

  47. J.A. Torres, J.I. Pascual, J.J. Sâenz, Phys. Rev. B 49, 16581 (1994).

    Article  ADS  Google Scholar 

  48. G. Tatara and H. Fukuyama, Phys. Rev. Lett. 78, 3773 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tagirov, L.R., Efetov, K.B. (2004). Huge Magnetoresistance in Quantum Magnetic Nanocontacts. In: Aktaş, B., Tagirov, L.R., Mikailov, F. (eds) Nanostructured Magnetic Materials and their Applications. NATO Science Series, vol 143. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2200-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2200-5_31

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2004-9

  • Online ISBN: 978-1-4020-2200-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics