Skip to main content

Part of the book series: Nonlinear Phenomena and Complex Systems ((NOPH,volume 8))

  • 165 Accesses

Abstract

A thermodynamic model is developed to explain the formation of a solid ridge of polystyrene spheres on the periphery of a sessile drop. The drop initially contains a uniform solution of water and polystyrene spheres. Evaporation creates a crater. The spheres leave the center and a ridge, whose width increases with increasing initial concentration, forms. For each equilibrium state, three contributions to the Gibbs free energy mainly control this process. One is related with the mechanical work of formation, the other with the spreading of the diameter and the last with the variation of the number of particles in the ridge. The model predicts, in agreement with the experiment, the initial and final value of the contact angles and the exponential diminution of concentration of particles with the ratio of the diameters of the ridge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Denkov, N.D.; Velev, O.D.; Kalchevsky, P.A.; and Ivanov, IB.; Nature 26,361,(1993)

    Google Scholar 

  2. Denkov, N.D.; Velev, O.D.; Kalchevsky, P.A.; Ivanov, I.B.; Yoshimura, H.; and Nagayama, K.; Langmuir 3183,8,(1992)

    Google Scholar 

  3. Dushkin, C.D., Yoshimura, H., Nagayama, K.; Chem.Phys.Lett. 455,204,(1993)

    Google Scholar 

  4. Kuz, V.A.; Langmuir, 13, 3900, (1997).

    Article  Google Scholar 

  5. Conway, J.; Korns, H.; Fisch, M.R.; Langmuir, 426, 13, (1997)

    Google Scholar 

  6. Deegan, R.D.; Bakajin, O.; Dupont, T.F.; Huber, G.; Nagel, S.R.; Witten, T.A.; Nature, 827, 389,(1997).

    Google Scholar 

  7. Parisse, F. and Allain C.; J.Phys.II France 6, 1111,(1996);

    Article  Google Scholar 

  8. Parisse, F. and Allain C.; Langmuir 13,3598,(1997)

    Article  Google Scholar 

  9. Israelachvili, J.; Intermolecular & Surface Forces, Academic Press, London (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Kuz, V.A. (2004). Thermodynamic behavior of a stain. In: Descalzi, O., MartĂ­nez, J., Tirapegui, E. (eds) Instabilities and Nonequilibrium Structures VII & VIII. Nonlinear Phenomena and Complex Systems, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2149-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2149-7_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-6994-1

  • Online ISBN: 978-1-4020-2149-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics