Skip to main content

Coupling Functions, Integral Multiplicities, and Inverse Transformations

  • Chapter
Cosmic Rays in the Earth’s Atmosphere and Underground

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 303))

  • 458 Accesses

Abstract

The intensity of any CR component of type (e.g. total neutron counting rate and different neutron multiplicities, muon component on the ground and underground at different depths and different directions, electron-photon component, frequency of External Atmospheric Showers (EAS), and others), observed at cut off rigidity R c (t) at the level h o (t) in the atmosphere at some moment of time t can be determined from

$$ N_i \left( {R_c \left( t \right),h_0 \left( t \right),t} \right) = \int\limits_{R_c \left( t \right)}^\infty {D\left( {R,\,t} \right)m_i \left( {R,h_0 \left( t \right),g\left( t \right),T\left( {h,t} \right),E\left( {h,t} \right)} \right)dR} $$
(3.1.1)

. Here D(R,t) is the primary CR spectrum out of the atmosphere, and m i (R, h o (t), T (h, t), E(h, t)) is the integral multiplicity (number of total secondary CR particles of type i generated from one primary particle with rigidity R), which depends on the mass of air h o (t) in the vertical column under the point of observations. (Note that atmospheric pressure is usually used instead of vertical column mass. This is correct only if the velocity of the wind is zero or very small. Otherwise it is necessary to take into account the Bernoulli effect; see Chapter 6 for details). The integral multiplicity depends also on the value g(t) of gravitational acceleration which is a function of the latitude and varies with time because of the gravitational influence of the Moon and the Sun, and on the vertical distribution of air temperature T(h,t) and atmospheric electric field E(h,t).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahluwalia H.S. and S.S. Xue “Atmospheric attenuation length for relativistic solar protons”, Geophys. Res. Letters, 20, No. 10, 995–998 (1993).

    Article  ADS  Google Scholar 

  • Akopyan M.R., G.A. Bazilevskaya, L.P. Borovkov, et al. “Large solar proton events during the beginning of 22nd cycle”, IzvestiaAc. of Sci. USSR, Ser. Phys., 55, No. 10, 1881–1884 (1991).

    Google Scholar 

  • Alanko K., I.G. Usoskin, K. Mursula, and G.A. Kovaltsov “Effective energy of neutron monitors”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 3901–3904 (2003).

    ADS  Google Scholar 

  • Aleksanyan T.M., V.M. Bednazhevsky, Ya.L. Blokh, L.I. Dorman, and F.A. Starkov “Coupling coefficients of the neutron component for the stars of various multiplicities inferred from the measurements on board research vessel ‘Academician Kurchatov’”, Proc. 16th Intern. Cosmic Ray Conf., Kyoto, 4, 315–320 (1979a).

    Google Scholar 

  • Aleksanyan T.M., Ya.L. Blokh, L.I. Dorman, and F.A. Starkov “Examination of the differences in the coupling coefficients and barometric coefficients of 3Nm-64 neutron supermonitor and lead-free monitor”, Proc 16th Intern. Cosmic Ray Conf., Kyoto, 4, 321–324, 1979b.

    Google Scholar 

  • Aleksanyan T.M., L.I. Dorman, V.G. Yanke and V.K. Korotkov “Coupling functions for lead and lead-free neutron monitors from the latitudinal measurements performed in 1982 in the survey by research vessel ‘Academician Kurchatov’”, Proc. 19th Intern. Cosmic Ray Conf. La Jolla. 5, 300–303 (1985).

    Google Scholar 

  • Baisultanova L.M., A.V. Belov, L.I. Dorman, E.A. Eroshenko, E.G. Klepach, V.A. Oleneva, and V.G. Yanke “North-South cosmic ray asymmetry in 1974, and development of global-spectrographic method”, In Solar Activity and Solar-Terrestrial Relations, Leningrad, 153–158 (1987).

    Google Scholar 

  • Belov A.V., L.I. Dorman, and V.G. Yanke “The simplest versions of the global-spectrographical method”, Proc. 18th Intern. Cosmic Ray Conf., Bangalore, 10, 144–147 (1983).

    Google Scholar 

  • Belov A.V. and E.A. Eroshenko “Proton spectra of the four remarkable GLE in the 22nd solar cycle”, Radiation Measurements, 26, No. 3, 461–466 (1996).

    Article  Google Scholar 

  • Belov A.V. and A.B. Struminsky “Neutron monitor sensitivity to primary protons below 3 GeV derived from data of ground level events”, Proc. 25th Intern. Cosmic Ray Conf., Durban, Vol. 1, 201–204 (1997)

    Google Scholar 

  • Bishara A.A. and L.I. Dorman “Spectrum of 11-year cosmic ray variation in the high energy region and greatscale structure of solar wind”, Geomagnetism and Aeronomy, 13, No. 5, 782–787 (1973a).

    Google Scholar 

  • Bishara A.A. and L.I. Dorman “Estimation of cosmic ray variation spectrum in the high energy region by underground observations”, Izvestia Academy of Sciences USSR, Series Phys., 37, No. 6, 1293–1297 (1973b).

    Google Scholar 

  • Bishara A.A. and L.I. Dorman “High-energy spectra of the 11-year, 27-day and solar-diurnal cosmic ray variations and Forbush-decreases according to the underground observation data”, Proc. 13th Intern. Cosmic Ray Conf., Denver, 2, 1218–1224 (1973c).

    ADS  Google Scholar 

  • Bishara A.A. and L.I. Dorman “Spectrum of cosmic ray Forbush-decreases in the high energy region”, Geomagnetism and Aeronomy, 14, No. 2, 357–360 (1974a).

    Google Scholar 

  • Bishara A.A. and L.I. Dorman “Spectrum of cosmic ray solar-diurnal variation in the high energy region”, Geomagnetism and Aeronomy, 14, No. 4, 573–579 (1974b).

    Google Scholar 

  • Bishara A.A. and L.I. Dorman “Some problems of cosmic ray variation investigation by underground observation data”, Cosmic Rays (Moscow, NAUKA), 15, 198–202 (1975).

    Google Scholar 

  • Blokh Ya.L., L.I. Dorman, and F.A. Starkov “Determination of the effective cut-off rigidities taking account of the particle arrival angles”, Proc 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 250–253 (1977).

    Google Scholar 

  • Blokh Ya.L., L.I. Dorman, I.Ya. Libin et al. “Difference coupling coefficients for the IZMIRAN scintillation supertelescope”, Proc. 16th Intern. Cosmic Ray Conf., Kyoto, 4, 408–412 (1979).

    Google Scholar 

  • Burger R.A., M.S. Potgieter, and B. Heber “Rigidity dependence of cosmic ray proton latitudinal gradients measured by the Ulysses spacecraft: Implications for the diffusion tensor”, J. Geophys. Re-Space., 105, No. Al2, 27447–27455(2000).

    Article  ADS  Google Scholar 

  • Chirkov N.P., A.M. Altukhov, G.F. Krymsky, P.A. Krivoshapkin, A.I. Kuzmin, and G.V. Skripin “Cosmic ray distribution and acceptance vectors of detectors, III.”, Geomagnetism and Aeronomia, 7, No. 4, 620–631 (1967).

    Google Scholar 

  • Clem J.M. and L.I. Dorman “Neutron monitor response functions”, Space Science Rev., 93, 335–359 (2000).

    Article  ADS  Google Scholar 

  • Debrunner H. and E. Flückiger “Calculation of the multiplicity yield function on the Nm-64 neutron monitor”, Proc. 12th Intern. Cosmic Ray Conf., Hobart, 3, 911–916 (1971a).

    ADS  Google Scholar 

  • Debrunner H. and E. Flückiger “Calculation of multiplicity yield function of IGY neutron monitor”, Helv. Phys. Acta, 44, No. 2, 241–251 (1971b).

    Google Scholar 

  • Debrunner H., J.A. Lockwood, and E. Flückiger “Specific yield function S(P) for a neutron monitor at sea level”, Preprint for 8th Europ. Cosmic Ray Symp., Rome, 1–13 (1982).

    Google Scholar 

  • Dorman L.I. “Influence of meteorological factors on the cosmic ray latitude effect and the process of meson generation”, J. of Experim. and Theoret. Phys. (JETP), Moscow, 26, No. 5, 504–505 (1954).

    Google Scholar 

  • Dorman L.I. “Method of differential cosmic ray coupling coefficients”, Geomagnetism and Aeronomy, 16, No. 6, 980–985 (1976a).

    Google Scholar 

  • Dorman L.I. “Differential coupling coefficients and differential meteorological coefficients for cosmic ray underground observations”, Geomagnetism and Aeronomy, 16, No. 6, 1107–1110 (1976b).

    Google Scholar 

  • Dorman L.I. “Method of different coupling coefficients for research of cosmic ray variations of magnetospheric and out-terrestrial origin”, In Symposium of KAPG on Solar-Terrestrial Physics (Tbilisi, September 1976), Moscow, NAUKA, Part 1, 74–76 (1976c).

    Google Scholar 

  • Dorman L.I. “The difference coupling coefficients for the study of cosmic ray variations. I. Ground observation”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 417–422 (1977a).

    Google Scholar 

  • Dorman L.I. “The difference coupling coefficients for the study of cosmic ray variations. II. Underground measurements”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 423–428 (1977b).

    Google Scholar 

  • Dorman L.I. “Spectrographic method for separately studying the geomagnetic and extraterrestrial variations for the complex spectrum of the extraterrestrial cosmic ray variation. I. The case of four detectors at one point”, Proc. 16th Intern. Cosmic Ray Conf., Kyoto, 4, 388–392 (1979a).

    Google Scholar 

  • Dorman L.I. “Spectrographic method for separately studying the geomagnetic and extraterrestrial variations for the complex spectrum of the extraterrestrial cosmic ray variation. II. The case of detection at several points”, Proc. 16th Intern. Cosmic Ray Conf., Kyoto, 4, 401–406 (1979b).

    Google Scholar 

  • Dorman L.I. “Spectrographical method of cosmic ray variations research”, In Dynamic of Current Sheets and Physics of Solar Activity, Riga, ZINATNE, 179–185 (1982a).

    Google Scholar 

  • Dorman L.I. “Spectrographical method with taking into account interference of cosmic ray effects of various classes”, Izvestia Academy of Sciences of USSR, Series Phys., 46, No. 9, 1720–1722 (1982b).

    Google Scholar 

  • Dorman L.I. and Kh.M. Khamirzov “Modification of the spectrographic method”, Cosmic Rays (NAUKA, Moscow), 24, 32–48 (1987).

    Google Scholar 

  • Dorman L.I. and V.K. Korotkov “Energy response of neutron monitor multiplicity”, Geomagnetism and Aeronomy, 21, No. 5, 788–791 (1981).

    Google Scholar 

  • Dorman L.I. and V.K. Korotkov “Relevance of the parameters of multiplicity distribution in neutron monitor to cosmic ray energy spectrum at observation level”, Proc. 18th Intern. Cosmic Ray Conf., Bangalore, 9, 437–440 (1983).

    Google Scholar 

  • Dorman L.I., M.Yu. Medvedev and V.S. Smirnov “Cosmic ray particle trajectories in the Earths magnetic field presented with high degree of accuracy”, Geomagnetism and Aeronomy, 6, No. 1, 19–26 (1966).

    Google Scholar 

  • Dorman L.I. and N.I. Pakhomov “The dependence of the integral generation multiplicity of neutron component at various depths in the atmosphere on zenith angle on primary particle incidence”, Proc. 16th Intern. Cosmic Ray Conf., Kyoto, 4, 416–420 (1979).

    Google Scholar 

  • Dorman L.I. and N.I. Pakhomov “Geomagnetic field effect on cosmic rays in the Earth ’s atmosphere”, Proc. 18th Intern. Cosmic Ray Conf., Bangalore, 3, 516–519 (1983a).

    Google Scholar 

  • Dorman L.I. and N.I. Pakhomov “Geomagnetic field influence on cosmic rays in the Earth ’s atmosphere”, Geomagnetism and Aeronomy, 23, No. 5, 710–714 (1983b).

    Google Scholar 

  • Dorman L.I. and L.E. Rishe “Calculations of the integral generation multiplicity, coupling coefficients and partial barometric coefficients for the cosmic ray neutron component observations at various altitudes using the method of discontinues Markov processes including non-ordinary of nuclear-meson cascade”, Proc. 13th Intern. Cosmic Ray Conf., Denver, 2, 835–842 (1973).

    ADS  Google Scholar 

  • Dorman L.I. and L.E. Rishe “Calculations of cosmic ray neutron component integral multiplicity, coupling coefficients and partial barometric coefficients by the method of nonorderly Markov processes”, Geomagnetism and Aeronomy, 14, No. 3, 417–423 (1974).

    Google Scholar 

  • Dorman L.I. and G.Sh. Shkhalakhov “Spectrographical method of cosmic ray variation investigation with taking into account penumbra”, Geomagnetism and Aeronomy, 15, No. 3, 405–411 (1975a).

    Google Scholar 

  • Dorman L.I. and G.Sh. Shkhalakhov “Spectrographical method of cosmic ray variation investigation with taking into account underground observations”, Geomagnetism and Aeronomy, 15, No. 4, 605–610 (1975b).

    Google Scholar 

  • Dorman L.I. and G.Sh. Shkhalakhov “The spectrograph method for studying the cosmic ray variations taking account of the penumbra structure”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 255–260 (1977a).

    Google Scholar 

  • Dorman L.I. and G.Sh. Shkhalakhov “Extension of the spectrum of the extraterrestrial cosmic ray variation to the high-energy range using the spectrographical method on the basis of underground measurements of cosmic rays”, Proc. 15th Intern. Cosmic Ray Conf., Plovdiv, 4, 261–266 (1977b).

    Google Scholar 

  • Dorman L.I. and V.S. Smirnov “On the calculations of cosmic ray asymptotic directions for soviet cosmic ray stations”, Izvestia Academy of Sciences of USSR, Series Phys., 30, No. 11, 1837–1838 (1966).

    Google Scholar 

  • Dorman L.I. and V.S. Smirnov “Cosmic ray asymptotical directions for soviet station network”, Cosmic Rays (NAUKA, Moscow), Vol. 8, 128–151 (1967).

    Google Scholar 

  • Dorman L.I., G. Villoresi, N. lucci, M. Parisi, N.G. Ptitsyna “Cosmic ray survey to Antarctica and coupling functions for neutron component in solar minimum (1996–1997), 3. Geomagnetic effects and coupling functions”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 7, 382–385 (1999).

    Google Scholar 

  • Dorman L.I., G. Villoresi, N. Iucci, M. Parisi, M.I. Tyasto, O.A. Danilova, and N.G. Ptitsyna “Cosmic ray survey to Antarctica and coupling functions for neutron component near solar minimum (1996–1997), 3, Geomagnetic effects and coupling functions”, J. Geophys. Res. 105, No. A9, 21,047–21,058 (2000).

    Article  ADS  Google Scholar 

  • Dorman L.I. and V.G. Yanke “The coupling functions of Nm-64 neutron supermonitor”, Proc. 17th Intern. Cosmic Ray Conf., Paris, 4, 326–329 (1981).

    Google Scholar 

  • Dorman L.I., V.G. Yanke and V.K. Korotkov “Energy sensitivity of supermonitors to the multiple neutrons and the coupling functions”, Proc. 17th Intern. Cosmic Ray Conf., Paris, 4, 330–333 (1981).

    Google Scholar 

  • Dorman L.I., A.V. Zaikin, and V.G. Yanke “Precision of the spectrographical method”, Proc. 18th Intern.

    Google Scholar 

  • Cosmic Ray Conf., Bangalore, 10, 140–143 (1983).

    Google Scholar 

  • Dostrovsky L., P. Rabinowitz, and R. Bivins “Monte Carlo calculations of high-energy nuclear interactions. I. Systematics of nuclear evaporation”, Phys. Rev., 111, No. 6, 1659–1676 (1958).

    Article  ADS  Google Scholar 

  • Efimov Yu.E., L.G. Kocharov, G.A. Kovaltsov, and I.G. Usoskin “Detection of solar neutrons by the neutron monitor network”, Proc. 23th Intern. Cosmic Ray Conf., Calgary, 3, 159–162 (1993).

    Google Scholar 

  • Gaisser T.K. “Calculations of muon response functions”, Proc. of Intern. Cosmic Ray Sympos. “High Energy Cosmic Ray Modulation”, Tokyo, 33–38 (1976).

    Google Scholar 

  • George E.P. “Observations of cosmic rays underground and their interpretation”, in Progress in Cosmic Ray Physics, ed. By J.G. Wilson, North Holland Publ. Co., Amsterdam, 1, 395–454 (1952).

    Google Scholar 

  • Gleeson L.J. and W.I. Axford “Solar modulation of galactic cosmic rays”, Astrophys. J., 154, Part 1, No. 3, 1011–1026 (1968).

    Article  ADS  Google Scholar 

  • Grigorov N.L. and V.S. Murzin “Interaction of primary cosmic rays of different energy with matter”, Izvestia Ac. of Sci. of USSR, Ser. Phys., 19, No. 1, 21–38 (1953).

    Google Scholar 

  • Grigorov N.L., V.S. Murzin, and I.D. Rapoport “Study of the 1011–1012 eV particle interactions with iron nuclei”, JETP, 36, No. 4, 1069–1079 (1959).

    Google Scholar 

  • Hess W.N., R.E. Confield, and R.E. Lingenfelter “Cosmic ray neutron demography”, J. Geophys. Res., 66, 665–667 (1961).

    Article  ADS  Google Scholar 

  • Iucci N., Villoresi G., Dorman L.I., Parisi M. “Cosmic ray survey to Antarctica and coupling functions for neutron component near solar minimum (1996–1997), 2, Determination of meteorological effects”, J. Geophys. Res., 105, No. A9, 21,035–21,046 (2000).

    Article  ADS  Google Scholar 

  • Johnson T.H. and D.V. Read “Unidirectional measurements of the cosmic ray latitude effects”, Phys. Rev., 51, 557–564 (1937).

    Article  ADS  Google Scholar 

  • Krymsky G.F., A.I. Kuzmin, N.P. Chirkov, P.A. Krivoshapkin, G.V. Skripin, and A.M. Altukhov “Cosmic ray distribution and acceptance vectors of detectors, I.”,Geomagnetism and Aeronomia, 6, No. 6, 991–996 (1966a).

    Google Scholar 

  • Krymsky G.F., A.I. Kuzmin, G.V. Skripin, P.A. Krivoshapkin, and A.M. Altukhov “Calculations of coupling coefficients for the compleks of azimuthal cosmic ray detectors”, in Research in Geomagnetism and Aeronomy, NAUKA, Moscow, 124–138 (1966b).

    Google Scholar 

  • Krymsky G.F., A.I. Kuzmin. N.P. Chirkov, P.A. Krivoshapkin, G.V. Skripin, and A.M. Altukhov “Cosmic ray distribution and acceptance vectors of detectors, II. Methods of investigation of cosmic ray distribution”, Geomagnetism and Aeronomia, 7, No. 1, 11–15 (1967a).

    Google Scholar 

  • Krymsky G.F., A.M. Altukhov, P.A. Krivoshapkin, A.I. Kuzmin, G.V. Skripin, and N.P. Chirkov “Cosmic ray distribution and acceptance vectors of detectors, IV”, Geomagnetism and Aeronomia, 7, No. 5, 794–798 (1967b).

    Google Scholar 

  • Krymsky G.F., A.M. Altukhov, P.A. Krivoshapkin, A.I. Kuzmin, and N.P. Chirkov “Using of matrixes for cosmic ray distribution investigation”, Izvestia Acad. of Sci. of USSR, Seria Phys., 31, No. 8, 1381–1383 (1967c).

    Google Scholar 

  • Lingenfelter R.E. “Production of carbon 14 by cosmic ray neutrons”, Reviews of Geophysics, 1, No. 1, 35–55 (1963a).

    Article  ADS  Google Scholar 

  • Lingenfelter R.E. “The cosmic-ray neutron leakage flux”, J. Geophys. Res., 68, No. 20, 5633–5639 (1963b).

    Article  ADS  Google Scholar 

  • Luzov A.A., Yu.G. Matyukhin, and V.E. Sdobnov “Calculations of energy sensitivity of Nm-64 neutron monitor”, Studies in Geomagnetism, Aeronomy, and Solar Physics, Nauka, Moscow, No. 20, 356–362 (1971).

    Google Scholar 

  • McCracken K.G., V.R. Rao, and M.A. Shea “The trajectories of cosmic rays in a high degree simulation of the geomagnetic field”, in Technical report, No. 77, Massachusetts Institute of Technology. USA (1962).

    Google Scholar 

  • McCracken K.G., V.R. Rao, B.C. Fowler, M.A. Shea, and D.F. Smart “Cosmic ray tables (asymptotic directions, variational coefficients and cut-off rigidities”, in IQSY Instruction Manuel, No. 10, London (1965).

    Google Scholar 

  • Metropolis N., R. Bivins, M. Storm, A. Turkevich, and G. Friedlander “Monte Carlo Calculations on Intranuclear cascades, 1. Low-Energy Studies” Phys. Rev., 110, No. 1, 185–203 (1958a).

    Article  MathSciNet  ADS  Google Scholar 

  • Metropolis N., R. Bivins, M. Strom, J.M. Miller, G. Friedlander, and A. Turkevich “Monte Carlo calculations on intranuclear cascades. II. High-energy studies and pion processes”, Phys. Rev., 110, No.1, 204–219 (1958b).

    Article  MathSciNet  ADS  Google Scholar 

  • Moraal H., M.S. Potgieter, P.H. Stoker, and A.J. Van der Walt “Neutron monitor latitude survey of cosmic ray intensity during the 1986/1987 solar minimum”, J. Geophys. Res., 94, No. A2, 1459–1464 (1989).

    Article  ADS  Google Scholar 

  • Nagashima K. “Three-dimensional cosmic ray anisotropy in interplanetary space”, Rep. Ionosphere Space Res. Japan, 25, 189–211 (1971).

    ADS  Google Scholar 

  • Nagashima K., S. Sakakibara, K. Murakami, et al. “Response and yield functions of neutron monitor, galactic cosmic-ray spectrum and its solar modulation, derived from all the available world-wide surveys”, Nuovo Cimento, 12, No. 2, 173–209 (1989).

    Article  Google Scholar 

  • Newkirk L.L. “Calculation of low-energy neutron flux in the atmosphere by the Sn method”, J. Geophys.Res., 68, 1825–1839 (1963).

    Article  ADS  Google Scholar 

  • Nobles R.A., R.A Alber, E.B Hughes, L.L. Newkirk, and M Walt “Neutron multiplicity monitor observations during 1965”, J. Geophys. Res., 72, No. 15, 3817–3828 (1967).

    Article  ADS  Google Scholar 

  • Pakhomov N.I. and V.E. Sdobnov “Calculations of the neutron supermonitor parameters”, in Studies on Geomagn., Aeron., and Solar Phys., Nauka, Moscow, 42, 185–189 (1977).

    Google Scholar 

  • Pearce R.M. and A.G. Fowler “Calculated spectral sensitivity of IGY and IQSY neutron monitors”, J. Geophys. Res., 69, No. 21, 4451–4455 (1964).

    Article  ADS  Google Scholar 

  • Pyle K.R. “Neutron monitor sensitivity to solar modulation changes: altitude vs. cutoff rigidity”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 2, 197–200 (1997).

    Google Scholar 

  • Rao U.R. and V. Sarabhai “Yime variations of directional cosmic ray intensity of low latitudes. 1. Comparison daily variation of the intensity of cosmic rays incident from east and west”, Proc. Phys. Soc., 263A, No. 1312, 101–117 (1961).

    Google Scholar 

  • Skripin G.V. “The complex of azimuthal telescopes and investigation of space-energetic characteristics of cosmic ray anisotropy”, Ph.D. Thesis, Yakutsk (1965).

    Google Scholar 

  • Usoskin I.G., K. Alanko, K. Mursula and G.A. Kovaltsov “Heliospheric modulation strength during the neutron monitor era”, Solar Phys., 207, 389–399 (2002).

    Article  ADS  Google Scholar 

  • Vernov S.N., N.L. Grigorov, G.T. Zatsepin, and A.E. Chudakov “The research of nucleons interactions with light nucleus at energies 109–1012 eV”, Izvestia Ac. of Sci. of USSR, Ser. Phys., 19, No. 5, 493–501 (1955).

    Google Scholar 

  • Villoresi G., L.I. Dorman, N. Iucci, and N.G. Ptitsyna “Cosmic ray survey to Antarctica and coupling functions for neutron component near solar minimum (1996–1997), 1, Methodology and data quality assurance”, J. Geophys. Res., 105, No. A9, 21,025–21,034 (2000).

    Article  ADS  Google Scholar 

  • Viskov V.V., L.I. Dorman, and V.G. Yanke “Calculations of integral multiplicities and coupling coefficients”, Izvestia Academy of Sciences USSR, Series Phys., 38, No. 9, 1978–1981 (1974).

    Google Scholar 

  • Vzorov I.K., Report No R12442, Joint Inst. Nucl. Res., Dubna (1969).

    Google Scholar 

  • Webber W.R. and J.J. Quenby “On the deviation of cosmic ray yield functions”, Philos. Mag., 4, No. 41, 654–664 (1959).

    Article  ADS  Google Scholar 

  • Yanchukovsky A.L., A.A. Luzov, and A.A. Sergeev “Spectrografic complex to study variation of the cosmic ray intensity”, Studies in Geomagnetism, Aeronomy, and Solar Physics, Nauka, Moscow, No. 20, 389–395 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dorman, L.I. (2004). Coupling Functions, Integral Multiplicities, and Inverse Transformations. In: Cosmic Rays in the Earth’s Atmosphere and Underground. Astrophysics and Space Science Library, vol 303. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2113-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2113-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-6987-3

  • Online ISBN: 978-1-4020-2113-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics