Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 303))

Abstract

Primary CR of galactic and solar origin (mostly protons and nuclei of different Z) undergo nuclear interactions with air atoms and generate a lot of secondary particles (secondary CR). As will be shown in Chapter 11, secondary relativistic positrons and electrons are responsible for lightning between clouds and ground, and between two clouds, as well as for discharges at great altitudes between clouds and the ionosphere (sprites). Primary CR (mostly protons, alpha—particles and heavier nuclei) and some part of secondary CR (nuclear active particles, mostly protons and neutrons) are important for the generation of stable and unstable cosmogenic nuclides in the atmosphere, in the oceans and underground (Chapters 10 and 17). Charged secondary particles such as protons, positive and negative pions, positive and negative muons, positrons and electrons (including re-entrant and splash albedo particles, see below Section 2.12) are important for the ionization of air and chemical processes in the atmosphere (particularly, formation of nitrates and influence on ozone layer — see Chapter 13). Ionization of air by primary and secondary charged CR particles is responsible for the effects of CR on ionosphere and radio wave propagation, for disruptions in radio communications during great solar flare events (Chapter 12). The ionization of air at altitudes higher than a few km caused by primary and secondary charged CR particles affects cloud formation as well, leading to long-term variation in global cloudiness, and consequently to global climate changes (Chapter 14).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aglietta M., B. Alpat, E.D. Alyea, et al. “Neutrino-induced and atmospheric single-muon fluxes measured over 5 decades of intensity by LVD at Gran-Sasso-Laboratory”, Astropart. Phys., 3 (4), 311–320 (1995).

    ADS  Google Scholar 

  • Agrawal V., T.K. Gaisser, P. Lipari, and T. Stanev “Atmospheric neutrino flux above 1 GeV”, Phys.Rev., D53, 1314–1323, (1996).

    ADS  Google Scholar 

  • Akhmedov E.Kh. and O.V. Bychuk “Resonant spin-flavor precession of neutrinos and the solar neutrino problem”, Zh. Éksp. Teor. Fiz. 95, 442–457 (1989).

    ADS  Google Scholar 

  • Ambrosio M., R. Antolini, G. Auriemma, et al. “Vertical muon intensity measured with MACRO at the Gran Sasso laboratory”, Phys. Rev., D52, 3793–3802 (1995).

    ADS  Google Scholar 

  • Andreev Yu.M., V.I. Gurentsov, and I.M. Kogai “Muon intensity from the Baksan underground scintillation telescope”, Proc. 20th Intern. Cosmic Ray Conf., Moscow, 6, 200–203 (1987).

    Google Scholar 

  • Appleton I.C., M.T. Hogue, and B.C. Rastin “A study of the muon momentum spectrum and positive-negative ratio at sea-level”, Nucl. Phys., B26, No. 2, 365–389 (1971).

    ADS  Google Scholar 

  • Bahcall J.N., M.H. Pinsonneault, and S. Basu “Solar Models: Current Epoch and Time Dependences, Neutrinos, and Helioseismological Properties”, Astrophys. J., 555, 990–1012 (2001).

    ADS  Google Scholar 

  • Bahcall J.N. and W.N. Press “Solar-cycle modulation of event rates in the chlorine solar neutrino experiment”, Astrophys. J., 370, 730–742 (1991).

    ADS  Google Scholar 

  • Battistoni G. “A 3-D calculation of the atmospheric neutrino fluxes”, Astropart. Phys., 12, 315–333 (2000).

    ADS  Google Scholar 

  • Battistoni G., A. Ferrari, T. Montaroli, and P. Sala “Improvements in the FLUKA calculations of the atmospheric neutrino fluxes”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 3, 1166 (2001).

    ADS  Google Scholar 

  • Baxendale J.M., C.J. Hume, and M.J. Thompson “Precise measurement of sea level muon charge ratio”, J. Phys., G1, No. 7, 781–788 (1975).

    ADS  Google Scholar 

  • Bazilevskaya G.A., D.Sc. Thesis, Physical Lebedev Institute, Moscow (1985).

    Google Scholar 

  • Bazilevskaya G.A., D.N. Korolkov, M.B. Krainev, A.K. Svirzhevskaya, and N.S. Svirzhevsky “On the angular distribution of cosmic ray intensity in the Earth ’s atmosphere”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 7, 321–324 (1997).

    Google Scholar 

  • Bazilevskaya G.A. and V.S. Makhmutov “The electron precipitation into the atmosphere according to cosmic ray experiment in the stratosphere”, Izvestia Academy of Sciences USSR, Series Phys., 63, No. 8, 1670–1674 (1999).

    Google Scholar 

  • Bazilevskaya G.A., A.M. Mukhamedzhanov, S.I. Nikolsky, Yu.I. Stozhkov, and T.N. Carakhchy’an “Cosmic rays and the neutrino flux in the Davis ’ experiment”, Soy. J. Nucl. Phys., 39, 543–550 (1984).

    Google Scholar 

  • Berezinsky V. “Solar neutrino as highlight of Astroparticle Physics”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 8, 59–79 (1997).

    ADS  Google Scholar 

  • Berger Ch., M. Fröhlich, H. Mönch, et al. “Experimental study of muon bundles observed in the Fréjus detector”, Phys. Rev., D40, No. 7, 2163–2171 (1989).

    ADS  Google Scholar 

  • Bleeker J.A.M., J.J. Burger, A. Scheepmaker, B.N. Swanenburg, and Y. Tanaka “A balloon observation of high energy electrons”, Proc. 9th Intern. Cosmic Ray Conf., London, 1, 327–329 (1965).

    ADS  Google Scholar 

  • Bollinger L.M., Bull. Amer. Phys. Soc., 25, No. 3, 16 (1950).

    Google Scholar 

  • Bower C.R., A.S. Beach, J.J. Beatty, et al. “The HEAT-pbar Cosmic Ray Antiproton Experiment”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake Sity, 5, 13–16 (1999).

    Google Scholar 

  • Briesmeister J.F. “MNCP — A general Monte Carlo N-particle transport code version 4A”, LA-12625-M, pp. 693, Los Alamos Nat. Lab., Los Alamos, N.M. (1993).

    Google Scholar 

  • Brun B. et al. “GEANT3 User ’s guide”, Rep. DD/EE/84–1, pp 584, Eur. Org. for Nucl. Res., Geneva (1987).

    Google Scholar 

  • Bucik R., A. Dmitriev, K. Kudela, and S. Ryumin “Gamma-radiation of the Earth ’s atmosphere from the CORONAS-I data”, Proc. 26th Intern. Cosmic Ray Conf., Salt-Lake City, 7, 433–436 (1999).

    Google Scholar 

  • Bykov A.A., V.Yu. Popov, A.I. Rez, V.B. Semikoz, and D.D. Sokoloff “Aperiodic spin-flavor conversions and electron-antineutrino from the Sun with random magnetic field”, Proc. of EU-Conference New Trends in Neutrino Physics, Ringberg Castle, Germany, 24–29 May 1998, World Scientific Publishing Company, 201–210 (1998).

    Google Scholar 

  • Castagnoli G.C. and D. Lal “Solar modulation effects in terrestrial production of carbon 14”, Radiocarbon, 22, 133–158 (1980).

    Google Scholar 

  • Clay J., C.G. Hooft, L.J. Dey, and J.T. Wiersma “An experimental test of the Super Nova hypothesis. Intensity of Cosmic rays in the Earth Crust”, Physica, 4, No. 2, 121–137 (1937).

    ADS  Google Scholar 

  • Clay J. and A. Van Gemnert “Decrease of the intensity of cosmic rays in the earth down to 1380 m waterequivalent”, Physica, 6, No. 6, 497–510 (1939a).

    ADS  Google Scholar 

  • Clay J. and A.G.M. Van Gemert “Absorption of the hard cosmic rays in different materials”, Physica, 6, No. 7, 649–655 (1939b).

    ADS  Google Scholar 

  • Cleveland B.T., T. Daily, R.Jr. Davis, J.R. Distel, K. Lande, C.K. Lee, P.S. Wildenhain, J. Ullman “Measurement of the solar electron neutrino flux with the Homestake chlorine detector”, Astrophys. J., 496, No 1, pt.1, 505–526 (1998).

    ADS  Google Scholar 

  • Cousins J.E., W.F. Nash, and A.J. Pointon “The Effect of the Angular Variation of the Intensity on Scattering Distribution of µ-Mesons Underground at a Depth of 40 m w.e.”, Il Nuovo Cimento, 6, 1113–1121 (1957).

    Google Scholar 

  • Crouch M. “An improved world survey expression for cosmic ray vertical intensity vs. depth in standard rock”, Proc. 20th Intern. Cosmic Ray Conf., Moscow, 6, 165–168 (1987).

    Google Scholar 

  • Daniel R.R. and S.A. Stephens “Cosmic ray produced electrons and gamma rays in the atmosphere”, Rev. Geophys. Space Sci., 12, No. 2, 233–258 (1974).

    ADS  Google Scholar 

  • Davis R. Jr. “A half-century with solar neutrinos”. Nobel Lecture in Physics, 1–21 (2002)

    Google Scholar 

  • Davis R Jr, A.K. Mann, L. Wolfenstein “Solar neutrinos”, Annu. Rev. Nucl. Part. Sci., 39, 467–506 (1989).

    ADS  Google Scholar 

  • De Nolfo G.A., S.W. Barwick, J.J. Beatty et al. “Secondary and re-entrant albedo electrons in the atmosphere”, Proc. 25th Intern. Cosmic Ray Conf., Durbin, 2, 373–376 (1997).

    Google Scholar 

  • Desorgher L., E.O. Flückiger, M.R. Moser, and R. Bütikofer “Geant Simulation of the Propagation of Cosmic Rays through the Earth ’s Atmosphere”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4277–4280 (2003).

    ADS  Google Scholar 

  • Dorman L.I. “Solar-Neutrino Variations: A Manifestation of Nonzero Neutrino Mass and Magnetic Moment, and Mixing”, Physics ofAtomic Nuclei, 63, No. 6, 984–988 (2000a).

    ADS  Google Scholar 

  • Dorman L.I. “The Asymmetry of Solar-Neutrino Fluxes” Physics of Atomic Nuclei, 63, No. 6, 989–992 (2000b).

    ADS  Google Scholar 

  • Dorman L.I., V.L. Dorman, and A.W. Wolfendale “North-South asymmetry in solar neutrino fluxes and in correlation coefficients”, Proc. 23th Intern. Cosmic Ray Conf.. Calgary, 4. 873–876 (1993).

    Google Scholar 

  • Dorman L.I., V.L. Dorman, and A.W. Wolfendale “The solar cycle variations of solar neutrino flux and heliolatitude anisotropy”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1239–1242 (1995).

    Google Scholar 

  • Dorman L.I. and A.W. Wolfendale “The correlation of the solar neutrino rate with solar activity”, J. Phys. G: Nucl. Part. Phys., 17, 769–778 (1991a).

    ADS  Google Scholar 

  • Dorman L.I. and A.W. Wolfendale “Solar neutrino rate and solar activity”, Geophys. Astrophys. Fluid Dynamics, 62, 173–182 (1991b).

    ADS  Google Scholar 

  • Dorman L.I. and A.W. Wolfendale “Relationship between the solar neutrino counting rate in the Homestake experiment, solar activity, cosmic ray intensity and the Earth ’s heliolatitude”, Proc.22th Intern. Cosmic Ray Conf., Dublin, 3, 736–739 (1991c).

    Google Scholar 

  • Dorman L.I. and A.W. Wolfendale “The solar neutrino problem: connection with elementary particle physics and the physics of the solar interior”, Proc.22th Intern. Cosmic Ray Conf., Dublin, 3, 740–743 (1991d).

    Google Scholar 

  • DuVernois M.A., A.S. Beach, J.J. Beatty et al. “Splash and reentrant albedo observations of electrons and positrons at a 4.2 GV vertical magnetic cutoff”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 10, 4003–4006 (2001a).

    ADS  Google Scholar 

  • DuVernois M.A., J.J. Beatty, C. Bower et al. “Absolute rigidity spectra of protons and helium from 16 to 250 GV”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 5, 1618–1621 (2001b).

    ADS  Google Scholar 

  • Ehmert A. “Die Absorptionkurve der harten component der kosmichen ultrasrahlung”, Zs. Phys., 106, No. 11–12. 751–772 (1937).

    ADS  Google Scholar 

  • Engel R., T.K. Gaisser, and T. Stanev “The flux of atmospheric muons”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 3, 1029–1032 (2001).

    ADS  Google Scholar 

  • Follet D.H. and I.D. Crawskaw “Cosmic ray measurements under thirty meters of clay”, Proc. Roy. Soc., A155, 546–558 (1936).

    ADS  Google Scholar 

  • Gaisser T.K. and T. Stanev “Cosmic Rays”, Phys. Rev., D54, No. 1, 122–127 (1996).

    Google Scholar 

  • Gavryusev V., J. Provost, E. Gavryuseva, and G. Berthomieu “The Spectrum of Gravity Modes as a Function of the Solar Structure — Model with a Mixed Core”, Sol. Phys., 133, 139–161 (1991).

    ADS  Google Scholar 

  • George E.P. “Observations of cosmic rays underground and their interpretation”, in Progress in Cosmic Ray Physics, ed. By J.G. Wilson, North Holland Publ. Co., Amsterdam, 1, 395–454 (1952).

    Google Scholar 

  • Golenkov A.E., A.K. Svirzhevskaya, N.S. Svirzhevsky, and Yu.I. Stozhkov “Cosmic ray latitude survey in the stratosphere during the 1987 solar minimum”, Proc. 21st Intern. Cosmic Ray Conf., Adelaida, 7, 14–17 (1990).

    Google Scholar 

  • Gonzales W.D., B.T. Tsurutani, P.S. McIntosh, and A.L. Clua de Gonzalez “Coronal hole-active regioncurrent sheet (CHARCS) association with intense interplanetary and geomagnetic activity”, Geophys. Res. Lett., 23, No. 19, 2577–2580 (1996).

    ADS  Google Scholar 

  • Hansen P., M. Ambriola, S. Bartalucci, et al. “A new measurement of muon spectra in the atmosphere”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 3, 921–924 (2001).

    Google Scholar 

  • Hebbeker T. and C. Timmermans, Preprint hep-ph/0102042 (2001).

    Google Scholar 

  • Hirata K.S., T. Kajita, M. Koshiba et al. “Observation of a neutrino burst from the supernova SN 1987A”, Phys. Rev. Lett., 58, No. 14, 1490–1493 (1987).

    ADS  Google Scholar 

  • Hirata K.S., T. Kajita, M. Koshiba et al. “Experimental-study of the atmospheric neutrino flux”, Phys. Lett., B 205, No. 2–3, 416–420 (1988).

    Google Scholar 

  • Hirata K.S., T. Kajita, K. Kifune et al. “Observation of 8B-solar neutrinos in the Kamiokande-II detector”, Phys. Rev. Lett., 63, No. 1, 16–19 (1989).

    ADS  Google Scholar 

  • Honda M., T. Kajita, K. Kasahara, and S. Midorikawa “Calculation of the flux of atmospheric neutrinos”, Phys. Rev. D52, 4985–5005 (1995).

    ADS  Google Scholar 

  • Hovestadt D. and P. Meyer “The geomagnetic cut-off at Ft. Churchill and the primary cosmic ray electron spectrum from 10 MeV to 12 GeV in 1968”, Acta Phys. Acad. Scient. Hungaricae, 29, suppl. 2, 525–531 (1970).

    Google Scholar 

  • Israel M.H. “Cosmic-Ray Electrons between 12 MeV and 1 GeV in 1967”, J. Geophys. Res., 74, No. 19, 4701–4713 (1969).

    ADS  Google Scholar 

  • Kajita T. “Muons and neutrinos”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, Vol. Invited, Rapporteur, and Highlight Papers, 194–205 (2001).

    Google Scholar 

  • Kasahara K., E. Mochizuki, S. Torii, et al. “Atmospheric gamma-ray observations with BETS for calibrating atmospheric neutrino flux calculations”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 3, 966–969 (2001).

    ADS  Google Scholar 

  • Kolhörster W. “Intensitates und Richtungsmessungen der durchdringenden Strahlung”, Berl. Ber., 24, 366–377 (1923).

    Google Scholar 

  • Kolhörster W. “The Hardest Cosmic Rays and the Electric Charge of the Earth”, Nature, 132, No. 3332, 407–407 (1933).

    ADS  Google Scholar 

  • Koshiba M. “Observational Neutrino Astrophysics”, Phys. Rep., 220, No. 5–6, 229–381 (1992).

    ADS  Google Scholar 

  • Koshiba M. “Birth of Neutrino Astrophysics”, Nobel Lecture in Physics, 1–15 (2002).

    Google Scholar 

  • Letaw J.R., G.H. Share, R.L. Kinzer, R. Silberberg, and E.L. Chupp “Satellite observation of atmospheric nuclear gamma radiation”, J. Geophys. Res., 94, 1211–1221 (1989).

    ADS  Google Scholar 

  • Ling J.C. “A semiempirical model for atmospheric gamma rays from 0.3 to 10 MeV at a geomagnetic latitude of 400”, J. Geophys. Res., 80, 3241–3252 (1975).

    ADS  Google Scholar 

  • Lingenfelter R.E. “Production of carbon 14 by cosmic ray neutrons”, Reviews of Geophysics, 1, No. 1, 35–55 (1963)

    ADS  Google Scholar 

  • Mahoney W.A., J.C. Ling, and A.S. Jacobson “HEAO 3 measurements of the atmospheric positron annihilation line”, J. Geophys. Res., 86, 11098–11104 (1981).

    ADS  Google Scholar 

  • Makhmutov V.S., G.A. Bazilevskaya, A.I. Podgorny, Yu.I. Stozhkov, and N.S. Svirzhevsky “The precipitation of electrons into the Earth ’s atmosphere during 1994”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1114–1117 (1995).

    Google Scholar 

  • Makhmutov V.S., G.A. Bazilevskaya, and M.B. Krainev “Characteristics of energetic electron precipitation into the Earth ’s polar atmosphere and geomagnetic conditions”, Adv. Space. Res. 2001a (in press).

    Google Scholar 

  • Makhmutov V.S., G.A. Bazilevskaya, M. B. Krainev, and M. Storini “Long-term cosmic ray experiment in the atmosphere: energetic electron precipitation events during 20–23 solar activity cycles”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 10, 4196–4199 (2001b).

    ADS  Google Scholar 

  • Makhmutov V.S., G.A. Bazilevskaya, M.B. Krainev, Y.I. Stozhkov, A.K. Svirzhevskaya, N.S. Svirzhevsky, S.Y. Malin “Semiannual variation in the number of energetic electron precipitation events recorded in the polar atmosphere”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4233–4236 (2003).

    Google Scholar 

  • Masarik J. and J. Beer “Simulation of particle fluxes and cosmogenic nuclide production in the Earth ’s atmosphere”, J. Geophys. Res., 104, No. D10, 12099–12111 (1999).

    ADS  Google Scholar 

  • Massetti S. “Is there a North-South asymmetry in the Homestake neutrino data connected with solar activity?”, Proc. 24th Intern. Cosmic Ray Conf., Rome. 4. 1251–1254 (1995)

    Google Scholar 

  • Massetti S., M. Storini, and N. Lucci “Summary of correlative analyses between Homestake neutrino data and related to solar activity”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1243–1247 (1995).

    Google Scholar 

  • Menon M., P.V. Ramanamurthy, B.V. Sreekantan, and S. Miyake “Cosmic Ray Intensity at Great Depth and Neutrino experiments”, Nuovo Cimento, 30, No. 5, 5766–5777 (1963).

    Google Scholar 

  • Mikheyev S.P. and A.Yu. Smirnov “Resonance enhancement of oscillations in matter and solar neutrino spectroscopy”, Soy. J. Nucl. Phys. 42, No. 6, 1441–1448 (1985).

    Google Scholar 

  • Mikheyev S.P. and A.Yu. Smirnov “Resonant amplification of v oscillations in matter and solar-neutrino spectroscopy”, Nuovo Cimento, 9C, Ser. 1, No 1. 17–26 (1986).

    Google Scholar 

  • Millikan R.A. “High Frequency Rays of Cosmic Origin”, Nature, 116, No.2927, 823–826 (1925).

    ADS  Google Scholar 

  • Millikan R.A. and G.H. Cameron “High Frequency Rays of Cosmic Origin III. Measurements in Snow-Fed Lakes at High Altitudes”, Phys. Rev., 28. No. 5. 851–868 (1926).

    ADS  Google Scholar 

  • Millikan R.A. and G.H. Cameron “New Precision in Cosmic Ray Measurements; Yielding Extension of Spectrum and Indications of Bands”, Phys. Rev., 31, No. 6, 921–930 (1928).

    MATH  ADS  Google Scholar 

  • Millikan R.A. and G.H. Cameron “A More Accurate and More Extended Cosmic-ray Ionization-Depth Curve, and the Present Evidence for Atom-Building”, Phys. Rev., 37, No. 3, 235–252 (1931).

    ADS  Google Scholar 

  • Motoki M., T. Sanuki, S. Orito, et al. “Precise measurement of atmospheric muon fluxes at sea level”, Proc. 27th Intern. Cosmic Ray Conf.. Hamburg 3, 927–930 (2001)

    ADS  Google Scholar 

  • Myssowsky L. and L. Tuwim “Versuche uber die Absorption der Hohenstrahlung im Wasser”, Ztschr. Phys., 35, No. 4, 299–305 (1925).

    Google Scholar 

  • Nandi B.C. and M. Sinha “Charge ratio of muons at sea level in range 5–600 GeV/c”, Nucl. Phys., B40, No. 1, 289–297 (1972)

    ADS  Google Scholar 

  • Oakley D.S., H.B. Snodgrass, R.K. Ulrich, and T.L. VanDeKop “On the correlation of solar surface magnetic flux with solar neutrino capture rate”. Astrophys. Lett., 437, L63–L66 (1994)

    ADS  Google Scholar 

  • Oakley D.S. and H.B. Snodgrass “Correlation Studies of Solar Magnetic with Solar Neutrino Flux”, Bull. Am. Phys. Soc., 40, No. 7, 1511 (1995).

    Google Scholar 

  • Oakley D.S. and H.B. Snodgrass, Technical Progress Report No. 65, University of Colorado Nuclear Physics Laboratory (1996).

    Google Scholar 

  • Oakley D.S. and H.B. Snodgrass “Interactions between solar neutrinos and solar magnetic fields”, Astropart. Phys., 7, No. 4, 297–306 (1997).

    ADS  Google Scholar 

  • Ramaty R., B. Kozlovsky, and R.E. Lingenfelter “Nuclear Gamma Rays from Energetic Particle Interactions”, Astrophys. J. Suppl., 40,487–495 (1979).

    ADS  Google Scholar 

  • Randell C.A. and W.E. Hazen “The ratio of electrons to mesons 1100 feet underground”, Phys. Rev., 81, No. 1, 144–145 (1951).

    ADS  Google Scholar 

  • Rastin B.C. “A study of the muon charge ratio at sea level within the momentum range 4 to 2000 GeV/c”, J. Phys., G10, No. 11, 1629–1638 (1984).

    ADS  Google Scholar 

  • Raychaudhuri P. “Time variations in Kamiokande solar neutrino data”, Mod. Phys. Lett., A6, No.22, 2003–2007 (1991).

    ADS  Google Scholar 

  • Reedy R.C. “Nuclide production by primary-ray protons”, J Geophys. Res., 92, Sunni.. E697–E702, 1987.

    ADS  Google Scholar 

  • Reedy R.C. and J. Masarik “Cosmogenic-nuclide depth profiles in the lunar surface”, Lunar Planet. Sci, 25, 1119–1120 (1994).

    ADS  Google Scholar 

  • Reeves G.D. “Relativistic electrons and magnetic storms: 1992–1995”, Geoph. Res. Lett., 25, No. 11, 1817–1820 (1998).

    ADS  Google Scholar 

  • Regener E. “Spectrum of cosmic rays”, Nature, 127, 233–234 (1931).

    ADS  Google Scholar 

  • Rivin Yu.R. “Temporal variations in the flux of high-energy solar neutrinos based on data from the detector in South Dakota”, Astron. Reports, 37, 202–208 (1993).

    ADS  Google Scholar 

  • Rivin Yu.R. and V.N. Obridko “Cyclic variation of the high-energy solar neutrino flux”, Astron. Reports, 41, 76–84 (1997).

    ADS  Google Scholar 

  • Rockstroh J. and W.R. Webber “A measurement of the spectrum of cosmic ray electrons between 20 Me V and 3 GeV in 1968 — Further evidence for extensive time variations of this component”, J. Geophys. Res., 74, No. 21, 5041–5053 (1969).

    ADS  Google Scholar 

  • Sanuki T., Y. Yamamoto, M. Motoki, et al. “Atmospheric muons at various altitudes”, Proc. 2/th Intern. Cosmic Ray Conf., Hamburg, 3, 950–953 (2001).

    Google Scholar 

  • Schmoker J.W. and J.A. Earl “Magnetic-Cloud-Chamber Observations of Low Energy Cosmic-Ray Electrons”, Phys. Rev., 138, No. 1B, B300–B302 (1965)

    ADS  Google Scholar 

  • Share G.H., R.J. Murphy, and E. Rieger “Atmospheric gamma-ray lines produced by cosmic rays and solar energetic particles”, Proc 26th Intern. Cosmic Ray Conf., Salt-Lake City, 7, 329–332 (1999).

    Google Scholar 

  • Shea M.A., D.F. Smart, and L.C. Gentile “Estimating cosmic ray vertical cutoff rigidities as a function of the Mcllwain L-parameter for different epochs of the geomagnetic field”, Phys. of the Earth and Planet. Interiors, 48, 200–205 (1987).

    ADS  Google Scholar 

  • Snodgrass H.B. and D.S. Oakley “Comment on Absence of Correlation between the Solar Neutrino Flux and the Sunspot Number”, Phys. Rev. Letters, 83, No. 9, 1894 (1999)

    ADS  Google Scholar 

  • Sreekantan B.V., S. Naranan, and P.V. Ramanamurthy “On the angular distribution of penetrating cosmic-ray particles at a depth 103 mwe below ground”, Proc. Indian Academy of Sciences, Ser. A, 43, No. 2, 113–129 (1956).

    Google Scholar 

  • Stephens S.A. “Atmospheric electron spectrum over Hyderabad and a study of re-entrant albedo electrons”, Acta Phys. Acad. Scient. Hungaricae, 29, suppl. 2, 727–732 (1970)

    Google Scholar 

  • Stozhkov Y.I., N.S. Svirzhevsky, and V.S. Makhmutov “Cosmic ray measurements in the atmosphere”, Preprint No. 8, FIAN, Moscow, 1–21, 2001.

    Google Scholar 

  • Sturrock P.A., G. Walther and M.S. Wheatland “Apparent Latitudinal Modulation of the Solar Neutrino Flux”, Astrophys. J., 507, 978–983 (1998).

    ADS  Google Scholar 

  • Tsuji S., K. Himei, T. Katayama, et al. “Atmospheric muon measurements I: Vertical measurements”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 3, 931–934 (2001).

    ADS  Google Scholar 

  • Vannuccini E., Grimani C., Papini P., and Stephens S.A. “The Secondary Proton Spectrum at Small Atmospheric Depths”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4287–4290 (2003)

    ADS  Google Scholar 

  • Verma S.D. “Measurement of the charged splash and re-entrant albedo of the cosmic radiation”, J. Geophys. Res., 72, No.3, 915–925 (1967).

    ADS  Google Scholar 

  • Verma S.D. and S.P. Bhatnagar “Observation of Energy Spectrum of Electron Albedo in Low Latitude Region at Hyderabad, India”, Proc. 19th Intern. Cosmic Ray Conf., La Jolla, 5, 316–319 (1985).

    Google Scholar 

  • Walther G. “On the Solar-Cycle Modulation of the Homestake Solar Neutrino Capture Rate and the Shuffle Test”, Astrophys. J. 513, 990–996 (1999).

    ADS  Google Scholar 

  • Willett J.B. and W.A. Mahoney “High spectral resolution measurement of gamma ray lines from the earth ’s atmosphere”, J. Geophys. Res., 97, 131–139(1992).

    ADS  Google Scholar 

  • Wilson V.C. “Cosmic-Ray Intensities at Great Depths”, Phys. Rev., 53, No. 5, 337–343 (1938a).

    ADS  Google Scholar 

  • Wilson V.C. “On the Nature of the Penetrating Cosmic Rays”, Phys. Rev., 53, No. 11, 908–909 (1938b).

    ADS  Google Scholar 

  • Wolfenstein L. “Neutrino oscillations in matter”, Phys. Rev. D17, 2369–2374 (1978).

    ADS  Google Scholar 

  • Zanini A., C. Ongaro, E. Durisi, L. Visca, S. DeAgostini, F. Fasolo, M. Pelliccioni, and O. Saavedra “Differential Neutron Flux in Atmosphere at Various Geophysical Conditions”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4291–4294 (2003)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dorman, L.I. (2004). Secondary Cosmic Rays Underground and in the Atmosphere. In: Cosmic Rays in the Earth’s Atmosphere and Underground. Astrophysics and Space Science Library, vol 303. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2113-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2113-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-6987-3

  • Online ISBN: 978-1-4020-2113-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics