Skip to main content

Potential and Realized Applications of Cosmic Ray Research in Science and Technology

  • Chapter
Cosmic Rays in the Earth’s Atmosphere and Underground

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 303))

  • 466 Accesses

Abstract

The subject of the problem which we consider in this Section is the possible application of general spectrographic method based on CR data of different CR components (e.g. neutron monitor, multi-directional muon telescopes on the ground and underground, detector of slow muons) for continuous registration of time variation of vertical distribution of air temperature up to 35–40 km, as well as possible using in meteorological service of great airports and space shot centers, in the work of the International Meteorological Service. In Chapter 15 we considered in detail the inverse problem to the theory of CR meteorological effects: how to determine continuously the vertical air temperature profile by using only CR data or by using CR data and ground temperature (which is easy to measure continuously). It was shown that for this purpose one can use standard NM (for excluding variations of extra-terrestrial origin) and multidirectional muon telescopes on the ground and underground, detector of slow muons (that have different densities of temperature coefficients). In Section 15.5 we described in detail the generalized spectrographic method, specially developed for solving this inverse problem, and gave formulas for a practically continuous passive location of vertical profile of air temperature up to 35–40 km on the basis of CR data (see the sketch of the method in Fig. 18.1.1). Let us note that now for excluding variations of extraterrestrial origin one can use CR data from other Observatories that are available in real time scale from the Internet. In our opinion, together with the traditional method of balloon sounding, this CR method of passive location of atmospheric conditions up to 35–40 km can be essentially useful in meteorological service of large airports that have frequent plane flights, and in meteorological service of space launch centers. It is not excluded that in the near future this method can be used widely also in the International Meteorological Service for giving more exact forecast of weather (in addition to the traditional methods).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adair R.K. “Constraints on biological effects of weak extremely low frequency electromagnetic fields”, Phys. Rev., A43, No. 2, 1039–1048 (1991).

    ADS  Google Scholar 

  • Ahluwalia H.S., G.R. Gisler, and L.I. Dorman “Milagro: an ideal detector for monitoring space weather?”, In Solar Drivers of Interplanetary and Terrestral Disturbances, ASP Conference Series, 95, 518–525 (1996).

    ADS  Google Scholar 

  • Aitbaev F.B., A.A. Vorobjev, A.Kh. Lyakhova, V.V. Oskomov, E.V. Kolomeets, A.N. Pegoev, Sh.D. Fridman, and N.V. Slunyaeva “Experimental determination of the neutron flux dependence from water contain in snow and from humidity of soil”, Proc. of Institute of Applied Geophysics, Moscow, 60–66, (1985).

    Google Scholar 

  • Akasofu S.I. “Energy coupling between the solar wind and the magnetosphere”, Space Sci. Rev., 28, No. 2, 121–190 (1981).

    ADS  Google Scholar 

  • Aleksanyan T.M., Ya.L. Blokh, L.I. Dorman, I.V. Dorman, I.Ya. Libin and A.N. Khodzhaev “Shore effect in cosmic rays”, Proc. 16th Intern. Cosmic Ray Conf., Kyoto, 4, 365–367 (1979a).

    Google Scholar 

  • Aleksanyan T.M., Ya.L. Blokh, L.I. Dorman and F.A. Starkov “Examination of the differences in the coupling coefficients and barometric coefficients of 3 NM-64 neutron supermonitor and lead-free monitor”, Proc. 16th Intern. Cosmic Ray Conf., Kyoto, 4, 321–324 (1979b).

    Google Scholar 

  • Aleksanyan T.M., V.M. Bednazhevsky, Ya.L. Blokh, L.I. Dorman, N.S. Kaminer, and F.A. Starkov “Experimental verification of the theoretical calculations of geomagnetic cutoff rigidities on the basis of the results of cosmic ray measurements on board r/v Academician Kurchatov”, Proc. 17th Intern. Cosmic Ray Conf., Paris, 4, 225–228 (1981).

    Google Scholar 

  • Asatrian G.A., Gr.A. Asatrian, V.Kh. Babayan, Yu.I. Stozhkov, and G.Zh. Oganian “Increasing of cosmic ray ionizing component intensity during Spitak earthquake 1988”, Izvestia Academy of Sciences of the USSR, Phys. Series, 55, No.10, 1979–1981 (1991).

    Google Scholar 

  • Badhwar G.D. and P.M. O ’Neill “Galactic cosmic radiation model and its applications”, Adv. Space Res., 17, No. 2, 7–17 (1996).

    ADS  Google Scholar 

  • Baevsky R.M., V.M. Petrov, G. Cornélissen et al. “Meta-analyzed heart rate variability, exposure to geomagnetic storms, and the risk of ischemic heart disease”, Scripta medica, 70, 199–204 (1997).

    Google Scholar 

  • Beaujean R., J. Kopp, and G. Reitz “Radiation exposure in civil aircraft”, Radiat. Prot. Dosimetry, 85, 1–4 (1999).

    Google Scholar 

  • Belov A.V. “The connection of cosmic ray variations with interplanetary and geomagnetic disturbances: diagnostics and prognosis”, The Proceedings of Conf on the Physics of Solar-Terrestrial Links, Irkutsk, 24–29 September 2001, in Solar-Terrestrial Physics (Irkutsk), No. 2 (115), 68–73 (2002).

    Google Scholar 

  • Belov A.V., L.I. Dorman, E.A. Eroshenko, N. Iucci, G. Villoresi, and V.G. Yanke “Search for predictors of Forbush-decreases”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 888–891 (1995).

    Google Scholar 

  • Belov A., L. Dorman, E. Eroshenko, L. Gromova, N. Iucci, D. Ivanus, M. Parisi, N. Ptitsyna, M. Tyasto, E. Vernova, G. Villoresi, and V. Yanke “The relation between malfunctions of satellites at different orbits and cosmic ray variations”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4213–4216 (2003a).

    ADS  Google Scholar 

  • Belov A., L. Dorman, N. Iucci, O. Kryakunova, N. Ptitsyna “The relation of high- and low-orbit satellite anomalies to different geophysical parameters”, Proc. of Rhodos ESPRIT Workshop, in press (2003b).

    Google Scholar 

  • Belov A. and E. Eroshenko “Cosmic Ray Observations for Space Weather”, The Proceedings for the 22-nd ISTC Japan Workshop on Space Weather Forecast, Japan, 2002, Vol. 1, 74–94 (2002).

    Google Scholar 

  • Belov A.V., E.A. Eroshenko, V.A. Oleneva, Kh.I. Dalgatova, and V.G. Yanke “Prognosis properties of cosmic ray pitch-angle distribution before great geomagnetic storms according to data of neutron monitors”, The Proceedings of Conf on the Physics of Solar-Terrestrial Links, Irkutsk, 24–29 September 2001, in Solar-Terrestrial Physics (Irkutsk), No. 2 (115), 83–85 (2002).

    Google Scholar 

  • Belov A.V., E.A. Eroshenko, and V.G. Yanke “Indices of cosmic ray activity as reflection of situation in interplanetary medium”, Workshop on Space Weather, ESA, ESTEC, 325–328 (1999).

    Google Scholar 

  • Bennet W.R. “Cancer and power lines”, Phys. Today, 47, No. 4, 23–29 (1994).

    Google Scholar 

  • Blokh Ya.L., V.M. Bondarenko, and A.G. Tarkhov “Underground registration of cosmic rays intended on the solution of some geological problems”, Geomagnetism and Aeronomy, 3, No. 2, 390–392 (1963).

    Google Scholar 

  • Blokh Y.L., V.M. Bondarenko, N.D. Kovalenko, and A.G. Tarkhov “On the cosmic ray use in the aim of underground geophysical prospecting”, Applied Geophysics (Moscow), 38, 142–157 (1964).

    Google Scholar 

  • Blokh Ya.L., V.M. Bondarenko, and A.G. Tarkhov “Using of cosmic rays for solving of geologicalgeophysical problems”, Cosmic Rays (NAUKA, Moscow), 7, 208–225 (1965).

    Google Scholar 

  • Blokh Ya.L., V.M. Bondarenko, and A.G. Tarkhov “Using of cosmic rays for solving some geological problems”, Cosmic Rays (NAUKA, Moscow), 8, 209–213 (1967).

    Google Scholar 

  • Boos E.Y., E.V. Kolomeets, and Sh.D. Fridman. Fridman “The Method of the Pollution Level Determination of the Earth ’s Atmosphery”, Patent No. 1427983, USSR (1983).

    Google Scholar 

  • Bondarenko V.M., Ya.L. Blokh, A.G. Tarkhov, and N.D. Kovalenko. Kovalenko “Method of underground geophysical investigations”, Patent No. 148162 with prioritet at 29 December, 1960.

    Google Scholar 

  • Cecchini S., A.C. Ramusino, F. Frontera, M. Galli, I. Longo, M. Ricciotti, and R. Sacchetti “A real time compact monitor for environmental radiation: cosmic rays and radioactivity”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1329 (1995).

    Google Scholar 

  • Clay J. and A.G.M. Van Gemert “Absorption of the hard cosmic rays in different materials”, Physica, 6, No. 7, 649–655 (1939).

    ADS  Google Scholar 

  • Despotashvili M.A., N.G. Khazaradze, N.A.Nachkebia, L.Kh. Shatashvili, and D.I. Sikharulidze “Anomalous solar-diurnal variation of Cosmic Ray Neutron and Hard components intensity, cosmic phenomena and the problem of Earthquakes”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 7, 440–443 (1999a).

    Google Scholar 

  • Despotashvili M.A., N.A. Nachkebia, and L.Kh. Shatashvili “Unusual changes of solar diurnal variations of cosmic ray neutron and hard components intensity”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 7, 284–287 (1999b).

    Google Scholar 

  • Dorman L.I. “On the Cosmic Ray World Service”, Izvestia Academy of Science of USSR, Seria Phys., 57, No. 7, 149–152 (1993).

    Google Scholar 

  • Dorman L.I. “On the prediction of great flare energetic particle events to save electronics on spacecrafts”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 6, 382–385 (1999a).

    Google Scholar 

  • Dorman L.I. “How to Save Microelectronics Code on Satellites, Rockets and Balloons from Great Solar Energetic Particle Events”, Proc. 14 th European Space Agency Symposium, Potsdam, Germany, 207–210 (1999b).

    Google Scholar 

  • Dorman L.I. “Expected Gamma-Ray Fluxes from Interactions of Flare Energetic Particles with Solar Wind Matter”, in Gamma-Ray Astrophysics, 2001 (ed. S. Ritz et al.), AIP Conf. Proc., Vol. 587, 628–632 (2001a).

    Google Scholar 

  • Dorman L.I. “Possible Using of Gamma Ray Measurements for Monitoring and Prediction of Radiation Hazard”, in 15 th ESA Symposium on European Rocket and Balloon Programmes and Related Research, Biarritz 28–31 May 2001, 457–462 (2001b).

    Google Scholar 

  • Dorman L.I. “Cosmic ray long-term variation: even-odd cycle effect, role of drifts, and the onset of cycle 23”, Adv. Space Res., 27, No. 3, 601–606 (2001c).

    ADS  Google Scholar 

  • Dorman L.I. “Solar Energetic Particle Events and Geomagnetic Storms Influence on People ’s Health and Technology; Principles of Monitoring and Forecasting of Space Dangerous Phenomena by Using On-Line Cosmic Ray Data”, in Proc. 22 nd ISTC Japan Workshop on Space Weather Forecast in Russia/CIS (ed. Y. Muraki), Nagoya University, 2, 133–151 (2002).

    Google Scholar 

  • Dorman L.I. “Determination of cosmic ray intensity variations in the last 400 years on the basis of solar activity data with taking into account convection-diffusion and drift mechanisms: applications to radiocarbon and climate change data”, 2nd World Space Congress and 34th COSPAR, Houston, October 2002, Adv. Space Res. (2003a), submitted for publication.

    Google Scholar 

  • Dorman L.I. “Cosmic rays and Space Weather”, in The Early Universe and the Cosmic Microwave Background: Theory and Observations (ed. N.G. Sanchez and Yu.I. Parijskij), NATO Science Series, 130, 517–557 (2003b).

    Google Scholar 

  • Dorman L.I. “Principles of cosmic ray using for space weather monitoring and forecasting”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4269–4272 (2003c).

    ADS  Google Scholar 

  • Dorman L.I., T.M. Aleksanyan et al. “Experimental examination of theoretical calculations of geomagnetic cutoff rigidity”, Geomagnetism and Aeronomy, 22, No. 5, 858–861 (1982).

    Google Scholar 

  • Dorman L.I., A.V. Belov, E.A. Eroshenko, L.A. Pustil’nik, A. Sternlieb, V.G. Yanke, and I.G. Zukerman “Possible cosmic ray using for forecasting of major geomagnetic storms, accompanied by Forbusheffects”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 6, 3553–3556 (2003).

    ADS  Google Scholar 

  • Dorman I.V. and L.I. Dorman “Solar wind properties obtained from the study of the 11-year cosmic ray cycle ”, J Geophys. Res., 72, No. 5, 1513–1520 (1967a).

    ADS  Google Scholar 

  • Dorman I.V. and L.I. Dorman “Propagation of energetic particles through interplanetary space according to the data of 11-year cosmic ray variations”, J. Atmosph. and Terr. Phys., 29, No.4, 429–449 (1967b).

    ADS  Google Scholar 

  • Dorman I.V., L.I. Dorman, V.K. Korotkov, and I.Ya. Libin “ Neutron multiplication in lead-free monitors and its possible applications”, Izvestia Academy of Sciences of USSR, Series Phys., 48, No. 11, 2123–2125 (1984a).

    Google Scholar 

  • Dorman I.V., L.I. Dorman, V.K. Korotkov, and I.Ya. Libin “Influence of environment chemical contents on the without lead neutron monitor data”, Geomagnetism and Aeronomy, 24, No. 5, 823–825 (1984b).

    Google Scholar 

  • Dorman I.V., L.I. Dorman, and I.Ya. Libin “Sensitivity of single and multiple cosmic ray neutrons to the surrounding medium in a lead-free monitor”, Proc. 19th Intern. Cosmic Ray Conf., La Jolla, 5, 490–493 (1985).

    Google Scholar 

  • Dorman L.I., I.V. Dorman, I.Ya. Libin, and A.N. Khodzhaev “Coupling coefficients and latitude effect of the cosmic ray neutron component inferred from the expedition measurements with a lead-free monitor”, Proc. 16th Intern. Cosmic Ray Conf., Kyoto, 4, 325–328 (1979).

    Google Scholar 

  • Dorman L.I, Iucci N., Villoresi G. “The use of cosmic rays for continuos monitoring and prediction of some dangerous phenomena for the Earth ’s civilization”, Astrophysics and Space Science, 208, 55–68 (1993a).

    ADS  Google Scholar 

  • Dorman L.I., Iucci N. and Villoresi G. “Possible monitoring of space processes by cosmic rays”, Proc. 23th Intern. Cosmic Ray Conf., Calgary, 3, 695–698 (1993b).

    Google Scholar 

  • Dorman L.I., Iucci N. and Villoresi G.“Space dangerous phenomena and their possible prediction by cosmic rays”, Proc. 23th Intern. Cosmic Ray Conf., Calgary, 3, 699–702 (1993c).

    Google Scholar 

  • Dorman L.I., Iucci N., Villoresi G. “The nature of cosmic ray Forbush-decrease and precursory effects”, Proc. 24th Intern. Cosmic Ray Conf., Rome, Vol. 4, pp. 892–895 (1995a).

    Google Scholar 

  • Dorman L.I., N.Iucci, N.G.Ptitsyna, G.Villoresi “Cosmic ray Forbush-decrease as indicators of space dangerous phenomenon and possible use of cosmic ray data for their prediction”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 6, 476–479 (1999).

    Google Scholar 

  • Dorman, L. I. ; Villoresi, G. ; Iucci, N. ; Parisi, M. ; Tyasto, M. I., Danilova, O. A. ; Ptitsyna, N. G., “Cosmic ray survey to Antarctica and coupling functions for neutron component near solar minimum (1996–1997), 3, Geomagnetic effects and coupling functions”, J Geophys. Res., 105, No. A9, p. 21,047–21,058 (2000).

    Google Scholar 

  • Dorman L.I., N. Iucci, N.G. Ptitsyna, G. Villoresi “Cosmic rays as indicators of space weather influence on the incidence of myocardial infarction, brain stroke, car and train accidents”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 9, 3511–3514 (2001a).

    ADS  Google Scholar 

  • Dorman L.I., I.V. Dorman, N. Iucci, M. Parisi, and G. Villoresi “Hysteresis between solar activity and cosmic rays during cycle 22: the role of drifts, and the modulation region”, Adv. Space Res., 27, No. 3, 589–594 (2001b).

    ADS  Google Scholar 

  • Dorman L.I., N. Iucci, and G. Villoresi “Time lag between cosmic rays and solar activity; solar minimum of 1994–1996 and residual modulation”, Adv. Space Res., 27, No. 3, 595–600 (2001c).

    ADS  Google Scholar 

  • Dorman L.I. for INTAS-00810 Team “Different space weather effects in malfunctions of the high and low orbital satellites”, Report on 34 COSPAR Sci. Assambley, Houston (2002); Adv. Space Res., submitted for publication.

    Google Scholar 

  • Dorman L.I., N. Iucci, M. Murat, M. Parisi, L.A. Pustil’nik, A. Sternlieb, G. Villoresi, and I.G. Zukerman “Dangerous FEP events: real-time data of ground and satellite CR measurements using for monitoring of beginning and forecasting of expected particle fluxes in atmosphere and in space”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 6, 3411–3414 (2003a).

    ADS  Google Scholar 

  • Dorman L.I. and L.A. Pustil’nik “Solar cosmic ray events: statistical characteristics for the diagnostic of acceleration, excaping and propagation processes”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 86–89 (1995).

    Google Scholar 

  • Dorman L.I. and L.A. Pustil’nik “Statistical characteristics of FEP events and their connection with acceleration, escaping and propagation mechanisms”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 6, 407–410 (1999).

    Google Scholar 

  • Dorman Lev, Lev Pustil’nik, Abraham Sternlieb, and Igor Zukerman “Using Ground-Level Cosmic Ray Observations for Automatically Generating Predictions of Hazardous Energetic Particle Levels”, Adv. Space Res., 31, No. 4, 847–852 (2003).

    Google Scholar 

  • Dorman L.I., L.A. Pustil’nik, A. Sternlieb, I.G. Zukerman, A.V. Belov, E.A. Eroshenko, V.G. Yanke, H. Mavromichalaki, C. Sarlanis, G. Souvatzoglou, S. Tatsis, N. Iucci, G. Villoresi, Yu. Fedorov, B.A. Shakhov, and M. Murat “Monitoring and Forecasting of Great Solar Proton Events Using the Neutron Monitor Network in Real Time”, IEEE Plasma Sciences, in press (2004).

    Google Scholar 

  • Dorman L.I., G. Villoresi, A.V. Belov, E.A. Eroshenko, N. Iucci, V.G. Yanke, K.F. Yudakhin, B. Bavassano, N.G. Ptitsyna, and M.I. Tyasto “Cosmic-ray forecasting features for big Forbush-decreases”, Nuclear Physics B, 49A, 136–144 (1995b).

    Google Scholar 

  • Dorman L.I. and V.G. Yanke “Cosmic rays in the Mercurian atmosphere”, Proc. 16th Intern. Cosmic Ray Conf., Kyoto, 3, 180 (1979a).

    Google Scholar 

  • Dorman L.I. and V.G. Yanke “The expected meteorological effects in cosmic rays as measured on the Martian surface”, Proc. 16th Intern. Cosmic Ray Conf., Kyoto, 3, 192 (1979b).

    Google Scholar 

  • Dorman L.I. and V.G. Yanke “Cosmic rays in the Jovian atmosphere”, Proc. 16th Intern. Cosmic Ray Conf., Kyoto, 3, 193 (1979c).

    Google Scholar 

  • Dorman L.I., V.G. Yanke, A.B. Kaichermazov, and A.S. Kumakhov “Secondary components of cosmic rays in the Martian atmosphere; integral multiplicities of generation and coupling coefficients for measurements on the Martian surface”, Proc. 16th Intern. Cosmic Ray Conf., Kyoto, 3, 187–191 (1979a).

    Google Scholar 

  • Dorman L.I., V.G. Yanke, and O.Kh. Unezhiv “Secondary cosmic ray components in the Venusian and Jovian atmospheres”, Proc. 16th Intern. Cosmic Ray Conf., Kyoto, 3, 181–185 (1979b).

    Google Scholar 

  • Dorman L.I. and I.G. Zukerman “Initial concept for forecasting the flux and energy spectrum of energetic particles using ground-level cosmic ray observations”, Adv. Space Res., 31, No. 4, 925–932 (2003).

    ADS  Google Scholar 

  • Dunbar A., A. Lockrige, and S. Whiteside “Catalog of significant Earthquakes 2150. B.C-191”, World Center A., Boulder USA (1992).

    Google Scholar 

  • Flückiger E.O., R. Bütikofer, L. Desorgher, and M.R. Moser “Global cosmic ray cutoff rigidities over the past 2000 years”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4229–4232 (2003).

    ADS  Google Scholar 

  • Fridman Sh.D., E.V. Kolomeets, V.V. Oskomov, and A.A. Vorobjev “An Application of Cosmic Rays for Solving Some Ecology and Hydrology Problems”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1326–1328 (1995).

    Google Scholar 

  • Friedberg W., K Copeland, F.E.Duke et al. “Guideleness and technical information provided by the Federal Aviation Administration to promote radiation safety for air carrier crew members”, Radiat. Prot. Dosimetry, 86, No. 4, 323–327 (1999).

    Google Scholar 

  • Friedman, H., R.O. Becker and C.H. Bachman “Effect of magnetic fields on reaction time performance”, Nature, 213, No. 5079, 949–950 (1967).

    ADS  Google Scholar 

  • Galper A.M., S.V. Koldashov, and S.A. Voronov “High-energy particle-flux variations as earthquake predictors”, Adv. Space Res., 15, No. 11, 131–134 (1995).

    ADS  Google Scholar 

  • Galper A.M., S.V. Koldashov, L.V. Maslennikov, V.V. Mikhailov, N.I. Shevtz, and S.A. Voronov “Energy Spectra of Stationary and Unstable Electron Radiation Belts”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 2, 333–336 (1997a).

    Google Scholar 

  • Galper A.M., S.V. Koldashov, L.V. Maslennikov, A.M. Murashov, N.I. Shevtz, and S.A. Voronov “High Energy Charged Particle Waves on the Low Boundary of the Radiation Belt”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 2, 349–352 (1997b).

    Google Scholar 

  • Galper A.M., S.V. Koldashev, A.M. Murashev, and S.A. Voronov “The fluctuations of high-energy charged particle fluxes in the near-Earth space and the earthquake prediction”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 7, 444–447 (1999).

    Google Scholar 

  • Galperin Yu.I., V.A. Gladyshev, N.V. Dzshordzshio, V.I. Larkina, and M.M. Mogilevsky “Precipitation of energetic trapped particles in magnetosphere over epicenter of reading earthquake”, Kosmicheskie Issledovanija., 30, No. 1, 89–106 (1992).

    ADS  Google Scholar 

  • Gokhberg M.V., A.V. Kustov, V.A. Liperovsky, R.K. Liperovskaja, E.P. Kharin, S.L. Shalimov “On disturbances in F-layer of ionosphere before strong earthquakes”, Izvestia of Academy of Sciences of USSR, Series Physics of Earth, No. 4, 12–20 (1988).

    Google Scholar 

  • Lucci N., G. Villoresi, L.I. Dorman, and M. Parisi “Cosmic ray survey to Antarctica and coupling functions for neutron component near solar minimum (1996–1997), 2. Determination of meteorological effects”, J. Geophys. Res., 105, No. A9, 21,035–21,046 (2000).

    Google Scholar 

  • Jockel P. “Cosmogenic 14CO as tracer for atmospheric chemistry and transport”, Dissertation Dr. of Natural Sciences, Heidelberg — Mainz, Germany, pp. 347 (2000).

    Google Scholar 

  • Kodama M., S. Kawasaki, and M. Wada “Cosmic ray snow gauge”, J. Appl. Rad. Isotopes, 26, No. 12, 774–775 (1975).

    Google Scholar 

  • Kogan R.M., I.M. Nazarov, and Sh.D. Fridman “Gamma spectrometry of natural environments and formations”, Israel Prog. for Sci. Trans. No. 5778 (1969).

    Google Scholar 

  • Konig H.H. “Behavioral changes in human subjects associated with ELF electric fields”, in ELF and VLF Electromagnetic Field Effects (M.A. Persinger, Ed.), New York, Plenum, 81–133 (1974).

    Google Scholar 

  • Konig, H.H. and F. Ankermuller “Uber den Einfluss besonders niederfrequenter elektrischer Vorgange in der Atmosphare auf den Menschen”, Naturwissenschaften, 47, 486–490 (1960).

    ADS  Google Scholar 

  • Kudela K., M. Storini, M.Y. Hoper, and A. Belov “Cosmic rays in relation to space weather”, Space Sci. Rev., 93, 153–174 (2000).

    ADS  Google Scholar 

  • Molchanov O.A. “Propagation of electromagnetic fields from seismic sources into the upper ionosphere”, Geomagnetism and Aeronomy, 31, 111–119 (1991).

    MathSciNet  Google Scholar 

  • Mortazavi S.M.J., J.R. Cameron, and A. Niroomand-rad “Is the Adaptive Response an Efficient Protection Against the Detrimental Effects of Space Radiation”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 4, 2299–2302 (2003).

    Google Scholar 

  • Munakata K., J.W. Bieber, S.-I. Yasue, et al. “Precursors of geomagnetic storms observed by the muon detector network”, J. Geophys. Res., 105, No. Al2, 27,457–27,468 (2000).

    Google Scholar 

  • Ptitsyna N.G., G. Villoresi, M.I. Tyasto, N. Iucci, and L.I. Dorman “Possible effect of geomagnetic disturbances on the incidence of traffic accidents (St. Petersburg 1987–1989)”, Phys. Med., 11, No. 3, 93–101 (1995).

    Google Scholar 

  • Ptitsyna N.G., G. Villoresi, L.I. Dorman, N. Iucci, and M. I. Tyasto “Natural and man-made low-frequency magnetic fields as a potential health hazard”, UFN (Uspekhi Fisicheskikh Nauk), 168, No 7, 767–791 (1998).

    Google Scholar 

  • Pustovetov V.P. and A.B. Malyshev “Space-time correlation of earthquakes and variation of high energy particle flux in the inner radiation belt”, Kosmicheskie Issledovanija., 31, No. 5, 84–90 (1993).

    Google Scholar 

  • Reiter R. “Bio-meteorologie auf physikalisher Basis”, Phys. Blaetter, 11, 453–464 (1955)

    Google Scholar 

  • Roederer J.G. “Are magnetic storms hazardous to your health?”, EOS Transactions (American Geophysical Union), 76, No. 44, 441, 444–445 (1995).

    ADS  Google Scholar 

  • Shatashvili L.Kh., D.I. Sikharulidze, N.G. Khazaradze, and N.G. Tutberidse “Anomal daily variations of neutron and muon cosmic ray components during periods of the Earth ’s crossing of neutral sheet of interplanetary magnetic field”, Izvestia of Russian Academy of Sciences, Physical Series, 63, No. 8, 1645–1648 (1999).

    Google Scholar 

  • Shea M.A. and D.F. Smart “Cosmic rays, geomagnetic field and climate change”, 2nd World Space Congress and 34th COSPAR, Houston, October 2002, Adv. Space Res. (2003a), submitted for publication.

    Google Scholar 

  • Shea M.A. and D.F. Smart “Preliminary Study of the 400-Year Geomagnetic Cutoff Rigidity Changes, Cosmic Rays and Possible Climate Changes”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4205–4208 (2003b).

    ADS  Google Scholar 

  • Shea M.A., D.F. Smart, and H. Carmichael. Carmichael “Summary of cutoff rigidities calculated with the International Geomagnetic Reference Field for various epochs”, Rep. AFGL-TR-76-0115, Environ. Res. Pap. 651, Air Force Geophys. Lab., Bedford, Mass. (1976).

    Google Scholar 

  • Sitinski A.D. “On the relationship of the Earth ’s seismicity with processes in the interplanetary space and in atmosphere”, Docladi Akademii Nauk SSSR, 295, No. 2, 338–341 (1987).

    ADS  Google Scholar 

  • Sitinski A.D. “On the relationship of earthquakes with solar activity”, Izvestija Akademii nauk SSSR, Ser. Fisika Zemli, 55, Ns 2, 13–30 (1989).

    Google Scholar 

  • Smart D.F. and M.A. Shea “Evaluation of Magnetic Shielding of Interplanetary Spacecraft from Cosmic Radiation”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 6, 3481–3484 (2003a).

    ADS  Google Scholar 

  • Smart D.F. and M.A. Shea “Geomagnetic cutoff rigidity calculations at 50-year intervals between 1600 and 2000”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 7, 4201–4204 (2003b).

    ADS  Google Scholar 

  • Sobolev G.A., I.P. Shestopalov, and E.P. Kharin “Geoeffective solar flares and seismic activity of the Earth”, Fizika Zemli, No. 7, 85–90 (1998).

    Google Scholar 

  • Srivastava B.J. and S. Saxena “Geomagnetic-biological correlations: some new results”, Indian J. of Radio and Space Phys., 9, No. 4, 121–126 (1980).

    Google Scholar 

  • Stassinopoulos E.G., C.A. Stauffer, and G.J. Brucker “A systematic global mapping of the radiation field at aviation altitudes”, Space Weather, 1, No. 1, 1005, 1–9 (2003).

    Google Scholar 

  • Stozhkov Y.I., N.S. Svirzhevsky, and V.S. Makhmutov “Cosmic ray measurements in the atmosphere”, Preprint No. 8, FIAN, Moscow, 1–21 (2001).

    Google Scholar 

  • Struminsky A. “Forbush precursory increase and shock associated particles on October 20, 1989”, Anales Geophysicae, 20, No. 8, 1247–1252 (2002).

    ADS  Google Scholar 

  • Tsyganenko N.A. “A magnetospheric magnetic field model with a warped tail current sheat”, Planet. Space Sci., 37, No. 1, 5–20 (1989).

    ADS  Google Scholar 

  • Tsyganenko N.A. and D.P. Stern “Modeling the global magnetic field of the large-scale Birkeland current system”, J. Geophys. Res., 101, No. Al2, 27187–27198 (1996).

    ADS  Google Scholar 

  • Villoresi G., T.K. Breus, L.I. Dorman, N. Iucci, and S.I. Rapoport “The influence of geophysical and social effects on the incidences of clinically important pathologies (Moscow 1979–1981)”, Physica Medica, 10, No 3, 79–91 (1994a).

    Google Scholar 

  • Villoresi G., Y.A. Kopytenko, N.G. Ptitsyna, M.l. Tyasto, E.A. Kopytenko, N. Iucci, and P.M. Voronov “The influence of geomagnetic storms and manmade magnetic field disturbances on the incidence of myocardial infarction in St. Petersburg (Russia)”, Phys. Med., 10, No. 4, 107–117 (1994b).

    Google Scholar 

  • Villoresi G., L.I. Dorman, N.G. Ptitsyna, N. Iucci, and M.I. Tyasto “Forbush-decreases as indicators of healthhazardous geomagnetic storms”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1106–1109 (1995).

    Google Scholar 

  • Villoresi G., L.I. Dorman, N. Iucci, and N.G. Ptitsyna “Cosmic ray survey to Antarctica and coupling functions for neutron component near solar minimum (1996–1997), 1, Methodology and data quality assurance”, J. Geophys. Res., 105, No. A9, 21,025–21,034 (2000).

    Google Scholar 

  • Volodichev N.N., B.M. Kuzhevskij, O.Yu. Nechaev et al. “Unusual Burst of Thermal Neutron Intensity at Height of 4200m above Sea Level during July 22, 1990 Solar Eclipse”, Astron. Tsirk. Akad. Nauk SSSR, No.1547, 25–26 (1991).

    ADS  Google Scholar 

  • Volodichev N.N., B.M. Kuzhevskij, O.Yu. Nechaev et al. “Neutron Intensity Burst during Penumbral July 26, 1991 Lunar Eclipse”, Kosmicheskie Issledovanija, 31, No. 4, 120–122 (1993).

    ADS  Google Scholar 

  • Volodichev N.N., B.M. Kuzhevsky, O.Yu. Nechaev, and P.I.Shavrin “The effect of neutron intensity increase formation during new-Moon and full-Moon periods”, Proc. 24th Intern. Cosmic Ray Conf., Rome, 4, 1151–1154 (1995).

    Google Scholar 

  • Volodichev N.N., B.M. Kuzhevskij, O.Yu. Nechaev et al. “Phenomenon of Neutron Intensity Bursts during New and Full Moons, Kosmicheskie Issledovanija, 35, No. 2, 135–143 (1997a).

    Google Scholar 

  • Volodichev N.N., B.M. Kuzshevskij, O.Yu. Nechaev, M.M. Panasjuk, and P.I. Shavrin“The phenomenon of neutron intensity bursts appearing in periods of new and full Moon”, Kosmicheskie Issledovanija, 35, No. 2, 144–154 (1997b).

    Google Scholar 

  • Volodichev N.N., B.M. Kuzhevskij, O.Yu. Nechaev, M.I. Panasyuk, A.N. Podorolsky, and P.I. Shavrin “Neutron Flux from Earth Surface at Newmoon and Fullmoon”, Proc. 25th Intern. Cosmic Ray Conf., Durban, 2, 441–444 (1997c).

    Google Scholar 

  • Volodichev N.N., I. Kushevski, O. Nechaev, and M.I. Panasyuk “Lunar periodicity of the neutron radiation burst and seismic activity on the Earth”, Proc. 26th Intern. Cosmic Ray Conf., Salt Lake City, 7, 437–439 (1999).

    Google Scholar 

  • Volodichev N.N., B.M. Kuzhevskij, O.Yu. Nechaev et al. “The Astrogeophysical Reasons of Bursts Intensity Neutron Radiation and Seismic Activity on the Earth”, Preprint of Skobeltsin INP Lomonosov MSU, No. 5/645, pp. 16 (2001a).

    Google Scholar 

  • Volodichev N.N., A.N. Podorolsky, B.W. Levin, and V.A. Podorolsky “Correlation of appearing of great series of rarthquakes with times of new and full Moon phases”, Vulcanologiya and Seismologiya, 7, 60–67 (2001b).

    Google Scholar 

  • Volodichev N.N., V.A. Zakharov, B.M. Kuzhevskij, O.Yu. Nechaev, A.N. Podorolsky, A.P. Chubenko, A.L. Sh’epetov, and V.P. Antonova “The flows of neutrons of space radiation and from terrestrial crust”, Proc. 27th Intern. Cosmic Ray Conf., Hamburg, 10, 4204–4207 (2001c).

    ADS  Google Scholar 

  • Vorobjev A.A., E.V. Kolomeets, V.V. Oskomov, R.G.-E. Pfeffer, and Sh.D. Fridman “Block for conjunction of water contain in snow detector based on measurements of CR neutrons with automatical meteorological station”, Proc. ofInstitute ofApplied Geophysics, Moscow, 72–78 (1985).

    Google Scholar 

  • Voronov S.A., A.M. Galper, V.G. Kirillov-Ugriymov, S.V. Koldashov, V.V. Mikhailov, A.V. Popov, and V.Yu. Chesnokov “Registration of sporadic increase of high energy particle flux near the Brazilian anomaly region”, Proc. 20th Intern. Cosmic Ray Conf., Moscow, 4, 451–452 (1987).

    Google Scholar 

  • Voronov S.A., A.M. Galper, S.V. Koldashev, V.V. Mikhailov, P.Yu. Naumov, A.V. Popov, and V.Yu. Chesnokov “Magnetic spectrometer of charged particles Marija-2” Pribori i Tehnika Experimenta (PTE), No. 2, 59–61 (1991).

    Google Scholar 

  • Yu Zhen-dong “Strong Earthquakes, Novae and Cosmic Ray Environment”, Proc. 19th Intern. Cosmic Ray Conf., La Jolla, 5, 529–532 (1985).

    Google Scholar 

  • Zhou D., D. O ’Sullivan, E. Semones et al. “Dose Equivalent, Absorbed Dose and Charge Spectrum Measurements Made in the International Space Station Orbit”, Proc. 28th Intern. Cosmic Ray Conf., Tsukuba, 4, 2263–2266 (2003).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dorman, L.I. (2004). Potential and Realized Applications of Cosmic Ray Research in Science and Technology. In: Cosmic Rays in the Earth’s Atmosphere and Underground. Astrophysics and Space Science Library, vol 303. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2113-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2113-8_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-6987-3

  • Online ISBN: 978-1-4020-2113-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics